Answer:

Step-by-step explanation:
Given

Now we know that system has infinite solution for x

in above equation.

∴
Looking at the graph you can see that the domain of the function is:
[0, 3.85]
To find the range of the function, we must follow the following steps:
Step 1)
Evaluate for t = 0
h (0) = - 4.87 (0) ^ 2 + 18.75 (0)
h (0) = 0
Step 2)
find the maximum of the function:
h (t) = - 4.87t ^ 2 + 18.75t
h '(t) = - 9.74 * t + 18.75
-9.74 * t + 18.75 = 0
t = 18.75 / 9.74
t = 1.925051335
We evaluate the function at its maximum point:
h (1.925051335) = - 4.87 * (1.925051335) ^ 2 + 18.75 * (1.925051335)
h (1.93) = 18.05
The range of the function is:
[0, 18.05]
Answer:
Domain: [0, 3.85]
Range: [0, 18.05]
option 1
(21/25) * 100
84 %
82 %
0.8 * 100
80 %
(17/20) * 100
85 %
17/20 is the highest one
Try this option (this is not the only way!):
1. the rule: if 'number_1' - 'number_2' > 0, then number_1>number_2. If 'number_1'-'number_2'<0, then number_2>number_1.
2. according to the rule above: 9.36-9.359=0.001. 0.001>0, it means, 9.36>9.359.
Answer:
0.11069
Step-by-step explanation:
We will assume that the trains pass by his house following a uniform distribution with values between 0 and 24. The probability of a train passing on a 9-hour time period is 9/24 = 3/8 = 0.375. Lets call Y the amount of trains passing by his house during that 9-hour period. Y follows a Binomail distribution with parameters 22 and 0.375.
P(Y ≤ 5) = P(Y = 0) + P(Y=1) + P(Y=2) + P(Y=3) + P(Y=4) + P(Y=5) =

I hope that works for you!