Answer:
b, e
Step-by-step explanation:
a, b) ordinarily, we claim the variable on the vertical axis is a function of the variable on the horizontal axis. By that claim, <em>temperature is a function of time</em>.
If the graph passed the horizontal line test (a horizontal line intersects in one place), then we could also say time is a function of temperature. The graph does not pass that test, so we cannot make that claim.
c) The graph has negative slope between 4:00 and 5:00. Temperature is decreasing in that interval, not increasing.
d) The graph has two intervals in which it is horizontal: 5:00-9:00 and 11:00-12:00. In those intervals it is neither increasing nor decreasing.
e) The graph shows a minimum in the interval 11:00-12:00. <em>The lowest temperature first occurs at 11:00</em>.
Answer:
9x sqrt 5x
Step-by-step explanation:
Simplify the radical by breaking the radicand up into a product of known factors.
9x√
5x
Answer:
B. BD = 9
Step-by-step explanation:
Simply set the 2 equations equal to each other (both are congruent due to perpendicular bisector):
6x + 3 = 3x = 6
3x + 3 = 6
3x = 3
x = 1
Then substitute 1 for <em>x</em> in BD
6(1) + 3
6 + 3
BD = 9
I believe the answer is d
This problem is a combination of the Poisson distribution and binomial distribution.
First, we need to find the probability of a single student sending less than 6 messages in a day, i.e.
P(X<6)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)
=0.006738+0.033690+0.084224+0.140374+0.175467+0.175467
= 0.615961
For ALL 20 students to send less than 6 messages, the probability is
P=C(20,20)*0.615961^20*(1-0.615961)^0
=6.18101*10^(-5) or approximately
=0.00006181