Answer:
Concept: Chemical Analysis
- You need to start by graphing the data and then analyzing it.
- We can see that the horse has a distance in meters of 980 at the end of the 10 seconds hence it is the fastest.
- The horse line has a linearly representation, while the alternate line has parabolic tendencies towards the end. The steeper line indicates a faster change in time or velocity which results in a greater distance traveled indicating that the horse is faster.
- *I have confidence you can graph that*
Answer:
The molar mass of Mg(NO₃)₂, 148.3 g/mol.
Explanation:
Step 1: Given data
- Mass of Mg(NO₃)₂ (solute): 42.0 g
- Volume of solution: 259 mL = 0.259 L
Step 2: Calculate the moles of solute
To calculate the moles of solute, we need to know the molar mass of Mg(NO₃)₂, 148.3 g/mol.
42.0 g × 1 mol/148.3 g = 0.283 mol
Step 3: Calculate the molarity of the solution
M = moles of solute / liters of solution
M = 0.283 mol / 0.259 L
M = 1.09 M
Answer : The atoms in this compound are Copper(Cu), Chlorine(Cl), Hydrogen(H), Oxygen(O).
Explanation :
The given compound is copper chloride bi-hydrate which is also called as copper (II) chloride dihydrate as it contains two water of crystallisation.
The formula of copper chloride bi-hydrate is
.
Therefore, there are 4 atoms in this compound and they are Copper(Cu), Chlorine(Cl), Hydrogen(H) and Oxygen(O).
Carbon monoxide is dangerous because it binds with hemoglobin in the blood.
Hemoglobin is made up of proteins that bind to iron atoms. The structure of the protein facilitates loose binding of oxygen. On other hand, Carbon monoxide binds very strongly to the iron in hemoglobin. Once carbon monoxide is bonded to hemoglobin, it is very difficult to release. This, eventually results in blood losing it its ability to transport oxygen. Hence, the person will suffocate. Due to this, CO is dangerous.