Answer:
The choice of the answer is fourth option that is -61 degrees.
Therefore the temperature drop is -61°Centigrade.
Explanation:
Given:
The temperature in a town started out at 55 degrees
Start temperature = 55°Centigrade. (Initial temperature)
End of the Day = -6°Centigrade. (Final temperature)
To Find:
How far did the temperature drop?
Solution:
We will have,

Substituting the above values in it we get

Therefore the temperature drop is -61°Centigrade.
Answer:
Coal
Explanation:
Coal is composed of the remains of dead animals and plants, being pressed down over the course of thousands of years.
(Also can I please have Brainliest? I need it to level up)
Answer:
The answer to your question is:
Explanation:
Ionic compound is formed when a metal and a nonmetal are attached.
If we have MgX₂, that means that the nonmetal must have a valence of -1.
From the list the nonmetals with a valence of -1 are:
Bromine(Br) and fluorine(F).
Answer:
Dipole-dipole interactions
Step-by-step explanation:
Each molecule consists of <em>two different elements</em>.
Thus, each molecule has permanent <em>bond dipoles</em>.
The dipoles do not cancel, so the attractive forces are dipole-dipole attractions.
"Covalent bonds" is <em>wrong,</em> because there are no bonds between the two molecules.
There are dipole-induced dipole and London dispersion forces, but they are much weaker than the dipole-dipole attractions.
<u>Answer:</u> The solubility product of silver (I) phosphate is 
<u>Explanation:</u>
We are given:
Solubility of silver (I) phosphate = 1.02 g/L
To convert it into molar solubility, we divide the given solubility by the molar mass of silver (I) phosphate:
Molar mass of silver (I) phosphate = 418.6 g/mol

Solubility product is defined as the product of concentration of ions present in a solution each raised to the power its stoichiometric ratio.
The chemical equation for the ionization of silver (I) phosphate follows:
3s s
The expression of
for above equation follows:

We are given:

Putting values in above expression, we get:

Hence, the solubility product of silver (I) phosphate is 