<span>AgCl(s) → Ag+(aq) + Cl-(aq) That would be my best guess</span>
Answer:
A i. Internal energy ΔU = -4.3 J ii. Internal energy ΔU = -6.0 J B. The second system is lower in energy.
Explanation:
A. We know that the internal energy,ΔU = q + w where q = quantity of heat and w = work done on system.
1. In the above q = -7.9 J (the negative indicating heat loss by the system). w = 3.6 J (It is positive because work is done on the system). So, the internal energy for this system is ΔU₁ = q + w = -7.9J + 3.6J = -4.3 J
ii. From the question q = +1.5 J (the positive indicating heat into the system). w = -7.5 J (It is negative because work is done by the system). So, the internal energy for this system is ΔU₂ = q + w = +1.5J + (-7.5J) = +1.5J - 7.5J = - 6.0J
B. We know that ΔU = U₂ - U₁ where U₁ and U₂ are the initial and final internal energies of the system. Since for the systems above, the initial internal energies U₁ are the same, then we say U₁ = U. Let U₁ and U₂ now represent the final energies of both systems in A i and A ii above. So, we write ΔU₁ = U₁ - U and ΔU₂ = U₂ - U where ΔU₁ and ΔU₂ are the internal energy changes in A i and A ii respectively. Now from ΔU₁ = U₁ - U, U₁ = ΔU₁ + U and U₂ = ΔU₂ + U. Subtracting both equations U₁ - U₂ = ΔU₁ - ΔU₂
= -4.3J -(-6.0 J)= 1.7 J. Since U₁ - U₂ > 0 , U₂ < U₁ , so the second system's internal energy increase less and is lower in energy and is more stable.
Answer:
A) Has properties of both metals and nonmetals - Barium.
B) Nonreactive gas - Neon.
C) Great conductor of heat and electricity - Boron.
D) Malleable and highly reactive - Potassium.
Explanation:
hope it helps .
Answer:
1 : 1.5
Explanation:
First Sample;
Ratio of sulfur and Oxygen
Mass of sulfur : Mass of oxygen
Mass of oxygen = Mass of sample - Mass of sulfur = 70 - 35 = 35g
35g : 35g
1 : 1
Second Sample;
Ratio of sulfur and Oxygen
Mass of sulfur : Mass of oxygen
Mass of oxygen = Mass of sample - Mass of sulfur = 70 - 28 = 42g
28g : 42g
1 : 1.5
Further reducing it to make oxygen 1;
0.6667 : 1
ratio in whole numbers of the masses of sulfur that combine with 1.00 g of oxygen between the two compounds;
0.6667 : 1
1 : 1.5
Different fabrics rub together, and electrons may rub off