Answer:
A.) Function 1 has the larger maximum at (4, 1).
Step-by-step explanation:
No step-by-step explanation, nobody pays attention to them anyway.
Answer:
-15
Step-by-step explanation:
start from the inside and go out.
So first plug in -3 into g(x)
g(-3) = -3 - 7 = -10
then plug in -10 into f(x)
f(-10) = 2(-10) + 5 = -15
so f(g(x)) = -15
Answer:
See the proof below.
Step-by-step explanation:
Assuming this complete question: "For each given p, let Z have a binomial distribution with parameters p and N. Suppose that N is itself binomially distributed with parameters q and M. Formulate Z as a random sum and show that Z has a binomial distribution with parameters pq and M."
Solution to the problem
For this case we can assume that we have N independent variables
with the following distribution:
bernoulli on this case with probability of success p, and all the N variables are independent distributed. We can define the random variable Z like this:
From the info given we know that
We need to proof that
by the definition of binomial random variable then we need to show that:


The deduction is based on the definition of independent random variables, we can do this:

And for the variance of Z we can do this:
![Var(Z)_ = E(N) Var(X) + Var (N) [E(X)]^2](https://tex.z-dn.net/?f=%20Var%28Z%29_%20%3D%20E%28N%29%20Var%28X%29%20%2B%20Var%20%28N%29%20%5BE%28X%29%5D%5E2%20)
![Var(Z) =Mpq [p(1-p)] + Mq(1-q) p^2](https://tex.z-dn.net/?f=%20Var%28Z%29%20%3DMpq%20%5Bp%281-p%29%5D%20%2B%20Mq%281-q%29%20p%5E2)
And if we take common factor
we got:
![Var(Z) =Mpq [(1-p) + (1-q)p]= Mpq[1-p +p-pq]= Mpq[1-pq]](https://tex.z-dn.net/?f=%20Var%28Z%29%20%3DMpq%20%5B%281-p%29%20%2B%20%281-q%29p%5D%3D%20Mpq%5B1-p%20%2Bp-pq%5D%3D%20Mpq%5B1-pq%5D)
And as we can see then we can conclude that 
Use compound interest formula:
Future value, F
25000=P(1+i)^n
where
P=present value to be found
i=annual interest rate = 0.065
n=number of years = 6
so
25000=P(1.065)^6
=>
P=(25000/1.065^6)=$17133.353
Answer:
B: x=-2
Step-by-step explanation:
This is because x=-2 is where the parabola is split into two equal halves.