Answer:
![y = -\frac{3}{2}x+15](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B3%7D%7B2%7Dx%2B15)
Step-by-step explanation:
Given:
Given point P(6, 6)
The equation of the line.
![y = \frac{2}{3}x](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B2%7D%7B3%7Dx)
We need to find the equation of the line perpendicular to the given line that contains P
Solution:
The equation of the line.
![y = \frac{2}{3}x](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B2%7D%7B3%7Dx)
Now, we compare the given equation by standard form ![y = mx +c](https://tex.z-dn.net/?f=y%20%3D%20mx%20%2Bc)
So, slope of the line
, and
y-intercept ![c=0](https://tex.z-dn.net/?f=c%3D0)
We know that the slope of the perpendicular line ![m_{1}\times m_{2} = -1](https://tex.z-dn.net/?f=m_%7B1%7D%5Ctimes%20m_%7B2%7D%20%20%3D%20-1)
![m_{2}=-\frac{1}{m_{1}}](https://tex.z-dn.net/?f=m_%7B2%7D%3D-%5Cfrac%7B1%7D%7Bm_%7B1%7D%7D)
![m_{2}=-\frac{1}{\frac{2}{3} }](https://tex.z-dn.net/?f=m_%7B2%7D%3D-%5Cfrac%7B1%7D%7B%5Cfrac%7B2%7D%7B3%7D%20%7D)
![m_{2}=-\frac{3}{2}](https://tex.z-dn.net/?f=m_%7B2%7D%3D-%5Cfrac%7B3%7D%7B2%7D)
So, the slope of the perpendicular line
From the above statement, line passes through the point P(6, 6).
Using slope intercept formula to know y-intercept.
![y=mx+c](https://tex.z-dn.net/?f=y%3Dmx%2Bc)
Substitute point
and ![m = m_{2}=-\frac{3}{2}](https://tex.z-dn.net/?f=m%20%3D%20m_%7B2%7D%3D-%5Cfrac%7B3%7D%7B2%7D)
![6=-\frac{3}{2}\times 6 +c](https://tex.z-dn.net/?f=6%3D-%5Cfrac%7B3%7D%7B2%7D%5Ctimes%206%20%2Bc)
![6=-3\times 3 +c](https://tex.z-dn.net/?f=6%3D-3%5Ctimes%203%20%2Bc)
![c=6+9](https://tex.z-dn.net/?f=c%3D6%2B9)
![c=15](https://tex.z-dn.net/?f=c%3D15)
So, the y-intercept of the perpendicular line ![c=15](https://tex.z-dn.net/?f=c%3D15)
Using point slope formula.
![y=mx+c](https://tex.z-dn.net/?f=y%3Dmx%2Bc)
Substitute
and
in above equation.
![y = -\frac{3}{2}x+15](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B3%7D%7B2%7Dx%2B15)
Therefore: the equation of the perpendicular line ![y = -\frac{3}{2}x+15](https://tex.z-dn.net/?f=y%20%3D%20-%5Cfrac%7B3%7D%7B2%7Dx%2B15)