Sr = 1 mol
H = C = 2 mol each
O = 6 mol
<span>Molecules are having the same chemical formula same number of atom but different three dimensional shapes are called <u>isomer</u>. Cis trans isomers maintain the same covalent partnerships,but atom may arranged differently.There are two or more compounds arranged in same molecular formula but different arranged atoms are seen in this molecule with different structure of it.</span>
According to this formula:
(P1V1) / T1 = (P2V2) / T2
convert T from C° to Kelvin:
T1 = 83 + 273 = 356 K
T2= 96 + 273 = 369 K
convert P from torr to atm:
1 torr = 0.00131578947 atm<span>
p1 = 0.839474 atm
P2 = 1.415789 atm
By substitution in the previous formula:
(0.839474 x 10.6 ) / (356) = ( 1.415789 x V2 ) / 369
So:
V2 = 6.5 L</span>
Answer:
chemical and electrical ( and sometimes nucelar)
Explanation:
Q: What is the change of entropy for 3.0 kg of water when the 3.0 kg of water is changed to ice at 0 °C? (Lf = 3.34 x 105 J/kg)
Answer:
-3670.33 J/K
Explanation:
Entropy: This can be defined as the degree of randomness or disorderliness of a substance. The S.I unit of Entropy is J/K.
Mathematically, change of Entropy can be expressed as,
ΔS = ΔH/T ....................................... Equation 1
Where ΔS = Change of entropy, ΔH = heat change, T = temperature.
ΔH = -(Lf×m).................................... Equation 2
Note: ΔH is negative because heat is lost.
Where Lf = latent heat of ice = 3.34×10⁵ J/kg, m = 3.0 kg, m = mass of water = 3.0 kg
Substitute into equation
ΔH = -(3.34×10⁵×3.0)
ΔH = - 1002000 J.
But T = 0 °C = (0+273) K = 273 K.
Substitute into equation 1
ΔS = -1002000/273
ΔS = -3670.33 J/K
Note: The negative value of ΔS shows that the entropy of water decreases when it is changed to ice at 0 °C