Answer:
Microorganisms have uses and benefits across all aspects of human life. From the bacteria that help humans digest food to the viruses that help plants resist heat, bacteria, viruses and fungi – when used properly – are key components in food, medicine, agriculture and other areas. In the future, they may even be core components of infrastructure and other new technologies.
Explanation:
You mean microorganisms, yes?
Some of the muscle attached to the skeleton is voluntary and may be used for movement.
Answer:
146 kJ
Explanation:
There are two heat flows in this question.
Heat lost on cooling + heat lost on solidifying = 0
q₁ + q₂ = 0
mCΔT + nΔHsol = 0
Data:
m = 575 g
C = 0.449 J·K⁻¹g⁻¹
T_i = 1825 K
T_f = 1811 K
ΔHsol = -13.8 kJ·mol⁻¹
Calculations:
(a) Heat lost on cooling
ΔT = T_f - T_i = 1811 K - 1825 K = -14 K
q₁ = mCΔT = 575 g × 0.449 J·K⁻¹g⁻¹ × (-14 K) = -361 J = -3.61 kJ
(b) Heat lost on solidifying
(c) Total heat lost
q = q₁ + q₂ = -3.61 kJ - 142.1 kJ = -146 kJ
The heat lost was 146 kJ.
Answer:
The chemical equation H2 + O2 + H2O represents what type of equation?
A. A balanced equation
xXxAnimexXX
Answer:
H₂ is excess reactant and O₂ the limiting reactant
Explanation:
Based on the chemical reaction:
2H₂(g) + O₂(g) → 2H₂O
<em>2 moles of H₂ react per mole of O₂</em>
<em />
To find limiting reactant we need to convert the mass of each reactant to moles:
<em>Moles H₂ -Molar mass: 2.016g/mol-:</em>
10g H₂ * (1mol / 2.016g) = 4.96 moles
<em>Moles O₂ -Molar mass: 32g/mol-:</em>
22g O₂ * (1mol / 32g) = 0.69 moles
For a complete reaction of 0.69 moles of O₂ are needed:
0.69mol O₂ * (2mol H₂ / 1mol O₂) = 1.38 moles of H₂
As there are 4.96 moles,
<h3>H₂ is excess reactant and O₂ the limiting reactant</h3>