Stoichiometry time! Remember to look at the equation for your molar ratios in other problems.
31.75 g Cu | 1 mol Cu | 2 mol Ag | 107.9 g Ag 6851.65
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ → ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ = 107.9 g Ag
∅ | 63.5 g Cu | 1 mol Cu | 1 mol Ag 63.5
There's also a shorter way to do this: Notice the molar ratio from Cu to Ag, which is 1:2. When you plug in 31.75 into your molar mass for Cu, it equals 1/2 mol. That also means that you have 1 mol Ag because of the ratio, qhich you can then plug into your molar mass, getting 107.9 as well.
The hydrogen and oxygen atoms that combine to form water molecules are bound together by covalent bonds. The electron from the hydrogen splits its time between the incomplete outer shell of the hydrogen atom and the incomplete outer shell of the oxygen atom.
TRNAs (transfer RNAs) carry amino acids to the ribosome. They act as "bridges," matching a codon in an mRNA with the amino acid it codes for.
As a wave and also as a particle. This was proposed by Einstain and it is a theory.
Answer:
The value of the missing equilibrium constant ( of the first equation) is 1.72
Explanation:
First equation: 2A + B ↔ A2B Kc = TO BE DETERMINED
⇒ The equilibrium expression for this equation is written as: [A2B]/[A]²[B]
Second equation: A2B + B ↔ A2B2 Kc= 16.4
⇒ The equilibrium expression is written as: [A2B2]/[A2B][B]
Third equation: 2A + 2B ↔ A2B2 Kc = 28.2
⇒ The equilibrium expression is written as: [A2B2]/ [A]²[B]²
If we add the first to the second equation
2A + B + B ↔ A2B2 the equilibrium constant Kc will be X(16.4)
But the sum of these 2 equations, is the same as the third equation ( 2A + 2B ↔ A2B2) with Kc = 28.2
So this means: 28.2 = X(16.4)
or X = 28.2/16.4
X = 1.72
with X = Kc of the first equation
The value of the missing equilibrium constant ( of the first equation) is 1.72