Answer:
The kinetic energy of the translational motion of an ideal gas depends on its temperature.
Explanation:
Answer:
What statements?
Explanation:
they both release harmful chemicals and can pollute the earth and destroy our ecosystems.
Answer: An atom in an excited state contains more of kinetic energy than the same atom in the ground state.
Explanation:
Kinetic energy is the energy acquired by an object due to its motion. And, thermal energy is the internal energy of an object arisen because of the kinetic energy present within the molecules of the object.
Potential energy is the energy acquired by an object due to its position.
The total energy present at the center of mass of an object is known as mass-energy.
So, when an atom gets excited then it means it is gaining kinetic energy due to which it moves from its initial position after getting excited.
Thus, we can conclude that an atom in an excited state contains more of kinetic energy than the same atom in the ground state.
Answer:
Option A:
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
Explanation:
The half reactions given are:
Zn(s) → Zn^(2+)(aq) + 2e^(-)
Cu^(2+) (aq) + 2e^(-) → Cu(s)
From the given half reactions, we can see that in the first one, Zn undergoes oxidation to produce Zn^(2+).
While in the second half reaction, Cu^(2+) is reduced to Cu.
Thus, for the overall reaction, we will add both half reactions to get;
Zn(s) + Cu^(2+) (aq) + 2e^(-) → Cu(s) + Zn^(2+)(aq) + 2e^(-)
2e^(-) will cancel out to give us;
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)