Answer:
24.4 amu or g/mole
Explanation:
24 x 0.790 = 19.0 amu
25 x 0.100 = 2.50 amu
26 x 0.110 = 2.86 amu
(Because of the 19.0, the sig figs go only to the 1/10 decimal place)
19.0 + 2.5 + 2.9 = 24.4 amu or g/mole
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 4.972 atm
V= 9.583 L
n=?
R= 
T=31.8 +273= 304.8 K
Putting value in the given equation:
=n
n= 
Moles = 1.905 moles
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Here you go! There are 0.9307 moles in 123.0 g of the compound. I solved this by using a fence post method. I calculated the number of grams in one mol of (NH4)2 SO4 and got 132.16.
I did this by finding the atomic mass of each element on the periodic table (my work is in the color blue for this step)
After that, i divided the given mass by the mass of one mol of the compound.
The answer is 0.9307 moles!! I hope this helped you! :))
Answer:
Do you need 3 ways or just one?
1. Temperature.
2. Pressure.
3. Polarity.
Explanation:
Eh hope these help, Idr understand the question but those are 3 ways to increase the solubility of a solid in water.
Answer:
Green
Explanation:
Positive: A strong green color in the flame indicates the presence of halogens (chloride, bromide, iodide but not fluoride).