1. Decreasing the temperature of the water.
2. One new atom with a large nucleus forms.
3.The reaction is an example of oxidation.
19.927 moles are in 1.20 times
atoms of phosphorus.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others.
1 mole of any substance contain Avogadro's number of molecules so we can calculate the number of moles by dividing the provided number of atoms over Avogadro's number to obtain the number of moles .
Moles= 
Moles= 1.20 X
atoms ÷ 6.022 X
= 19.927
Hence, 19.927 moles are in 1.20 times
atoms of phosphorus.
Learn more about moles here:
brainly.com/question/26416088
#SPJ1
Answer:
An excellent experiment is to heat sodium thiosulfate in a water bath. The solid crystals will dissolve into the water in the hydrated crystals forming a supersaturated solution. ... Placing a small crystal in the supersaturated solution will cause the liquid to turn solid.
Answer:
WHAT DIAGRAM THX FOR POINTS THO
Explanation:
Answer:
3. 3.45×10¯¹⁸ J.
4. 1.25×10¹⁵ Hz.
Explanation:
3. Determination of the energy of the photon.
Frequency (v) = 5.2×10¹⁵ Hz
Planck's constant (h) = 6.626×10¯³⁴ Js
Energy (E) =?
The energy of the photon can be obtained by using the following formula:
E = hv
E = 6.626×10¯³⁴ × 5.2×10¹⁵
E = 3.45×10¯¹⁸ J
Thus, the energy of the photon is 3.45×10¯¹⁸ J
4. Determination of the frequency of the radiation.
Wavelength (λ) = 2.4×10¯⁵ cm
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
Next, we shall convert 2.4×10¯⁵ cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
2.4×10¯⁵ cm = 2.4×10¯⁵ cm × 1 m /100 cm
2.4×10¯⁵ cm = 2.4×10¯⁷ m
Thus, 2.4×10¯⁵ cm is equivalent to 2.4×10¯⁷ m
Finally, we shall determine the frequency of the radiation by using the following formula as illustrated below:
Wavelength (λ) = 2.4×10¯⁷ m
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
v = c / λ
v = 3×10⁸ / 2.4×10¯⁷
v = 1.25×10¹⁵ Hz
Thus, the frequency of the radiation is 1.25×10¹⁵ Hz.