Answer:
I don't use Geogebra, but the following procedure should work.
Step-by-step explanation:
Construct a circle A with point B on the circumference.
- Use the POINT and SEGMENT TOOLS to create a circle with centre B and radius BA.
- Use the POINT tool to mark points D and E where the circles intersect.
- Use the SEGMENT tool to draw segments from C to D, C to E, and D to E.
You have just created equilateral ∆CDE inscribed in circle A.
My best guess is a line graph because it shows the consistent numbers and then you can lay them all out after you have completed the graph
The points on the graph of the inverse variation are of the form:
(x, 8/x)
<h3>
Which ordered pairs are on the graph of the function?</h3>
An inverse variation function is written as:
y = k/x.
Here we know that k = 8.
y = 8/x
Then the points (x, y) on the graph of the function are of the form:
(x, 8/x).
So evaluating in different values of x, we can get different points on the graph:
- if x = 1, the point is (1, 8)
- if x = 2, the point is (2, 4)
- if x = 3, the point is (3, 8/3)
- if x = 4, the point is (4, 2)
And so on.
If you want to learn more about inverse variations:
brainly.com/question/6499629
#SPJ1
Answer:
The points on a line can be assigned real number coordinates (think of numbers on a number line). The distance between any two points is their difference.