<span>It means that it is pertaining to a type of math or in this case Geometry, for the use of its method.
</span>
Answer:
A.
Step-by-step explanation:
let me know if you want an explanation :))
Together I think it’s the same way that you can get the one to the one you have on your computer problems you have no proof that I have it on my computer problems I have lost all the same information I I don’t have any proof that you are in my account so so much you have to pay for it and I’m sorry you don’t know where I can get you I know I
Answer:

Step-by-step explanation:
Each vertical asymptote corresponds to a zero in the denominator. When the function does not change sign from one side of the asymptote to the other, the factor has even degree. The vertical asymptote at x=-4 corresponds to a denominator factor of (x+4). The one at x=2 corresponds to a denominator factor of (x-2)², because the function does not change sign there.
__
Each zero corresponds to a numerator factor that is zero at that point. Again, if the sign doesn't change either side of that zero, then the factor has even multiplicity. The zero at x=1 corresponds to a numerator factor of (x-1)².
__
Each "hole" in the function corresponds to numerator and denominator factors that are equal and both zero at that point. The hole at x=-3 corresponds to numerator and denominator factors of (x-3).
__
Taken altogether, these factors give us the function ...

Answer:
Prove set equality by showing that for any element
,
if and only if
.
Example:
.
.
.
.
.
Step-by-step explanation:
Proof for
for any element
:
Assume that
. Thus,
and
.
Since
, either
or
(or both.)
- If
, then combined with
,
. - Similarly, if
, then combined with
,
.
Thus, either
or
(or both.)
Therefore,
as required.
Proof for
:
Assume that
. Thus, either
or
(or both.)
- If
, then
and
. Notice that
since the contrapositive of that statement,
, is true. Therefore,
and thus
. - Otherwise, if
, then
and
. Similarly,
implies
. Therefore,
.
Either way,
.
Therefore,
implies
, as required.