1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
6

Which of the following rules represents a dilation? A. (x, y) → (x − 3, y + 5) A. , (x, y) → (x − 3, y + 5) , B. (x, y) → (−y, x

) B. , (x, y) → (−y, x) , C. (x, y) → (0.5x, 0.5y) C. , (x, y) → (0.5x, 0.5y) , D. (x, y) → (−x, y) D. , (x, y) → (−x, y) ,
Mathematics
1 answer:
murzikaleks [220]3 years ago
7 0

Answer:

35

Step-by-step explanation:

mutilply the 3 by the 9 subtract dez uts

You might be interested in
Jean and Clint stack boxes at a warehouse. Jean stacks 50 boxes per hour. Clint stacks 60 boxes per hour. Which of the following
Valentin [98]
Represent the total number of boxes that both jean and clint stack in h hours,

total number of boxes=(50xh)+(60xh)
you want the total number of boxes for both of them together. so the amount they can stack times h or the hours. so if h=5 you would do 50x5 plus+ 60x5 which would give you 250 and 300. add the two you get 550 boxes for 5 hours total.
5 0
3 years ago
I need help with part "C" and "D"
dmitriy555 [2]

3x²cos( x³ ) and 3sin²( x ) cos( x ) are the derivatives of the composite functions f(x) = sin(x³) and f(x) = sin³(x) respectively.

<h3>What are the derivative of f(x) = sin(x³) and f(x) = sin³(x)?</h3>

Chain rule simply shows how to find the derivative of a composite function. It states that;

d/dx[f(g(x))] = f'(g(x))g'(x)

Given the data in the question;

  • f(x) = sin(x³) = ?
  • f(x) = sin³(x) = ?

First, we find the derivate of the composite function f(x) = sin(x³) using chain rule.

d/dx[f(g(x))] = f'(g(x))g'(x)

f(x) = sin(x)

g(x) = x³

Apply chain rule, set u as x³

d/du[ sin( u )] d/dx[ x³ ]

cos( u ) d/dx[ x³ ]

cos( x³ ) d/dx[ x³ ]

Now, differentiate using power rule.

d/dx[ xⁿ ] is nxⁿ⁻¹

cos( x³ ) d/dx[ x³ ]

In our case, n = 3

cos( x³ ) ( 3x² )

Reorder the factors

3x²cos( x³ )

Next, we find the derivative of f(x) = sin³(x)

d/dx[f(g(x))] = f'(g(x))g'(x)

f( x ) = x³

g( x ) = sin( x )

Apply chain rule, set u as sin( x )

d/du[ u³ ] d/dx[ sin( x )]

Now, differentiate using power rule.

d/dx[ xⁿ ] is nxⁿ⁻¹

d/du[ u³ ] d/dx[ sin( x )]

3u²  d/dx[ sin( x )]

Replace the u with sin( x )

3sin²(x)  d/dx[ sin( x )]
Derivative of sin x with respect to x is cos (x)

3sin²( x ) cos( x )

Therefore, the derivatives of the functions are 3x²cos( x³ ) and 3sin²( x ) cos( x ).

Learn more about chain rule here: brainly.com/question/2285262

#SPJ1

4 0
1 year ago
Find two consecutive whole numbers that 3 lies between.<br><br><br> Please help
Aleksandr-060686 [28]

Answer:

1 and 2?

Step-by-step explanation:

6 0
3 years ago
Which number is the numerator in the fraction 1/2
Paraphin [41]
1

a numerator in a fraction is the top number
5 0
3 years ago
2,17,82,257,626,1297 next one please ?​
In-s [12.5K]

The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule n^4+1. The next number would then be fourth power of 7 plus 1, or 2402.

And the harder way: Denote the <em>n</em>-th term in this sequence by a_n, and denote the given sequence by \{a_n\}_{n\ge1}.

Let b_n denote the <em>n</em>-th term in the sequence of forward differences of \{a_n\}, defined by

b_n=a_{n+1}-a_n

for <em>n</em> ≥ 1. That is, \{b_n\} is the sequence with

b_1=a_2-a_1=17-2=15

b_2=a_3-a_2=82-17=65

b_3=a_4-a_3=175

b_4=a_5-a_4=369

b_5=a_6-a_5=671

and so on.

Next, let c_n denote the <em>n</em>-th term of the differences of \{b_n\}, i.e. for <em>n</em> ≥ 1,

c_n=b_{n+1}-b_n

so that

c_1=b_2-b_1=65-15=50

c_2=110

c_3=194

c_4=302

etc.

Again: let d_n denote the <em>n</em>-th difference of \{c_n\}:

d_n=c_{n+1}-c_n

d_1=c_2-c_1=60

d_2=84

d_3=108

etc.

One more time: let e_n denote the <em>n</em>-th difference of \{d_n\}:

e_n=d_{n+1}-d_n

e_1=d_2-d_1=24

e_2=24

etc.

The fact that these last differences are constant is a good sign that e_n=24 for all <em>n</em> ≥ 1. Assuming this, we would see that \{d_n\} is an arithmetic sequence given recursively by

\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}

and we can easily find the explicit rule:

d_2=d_1+24

d_3=d_2+24=d_1+24\cdot2

d_4=d_3+24=d_1+24\cdot3

and so on, up to

d_n=d_1+24(n-1)

d_n=24n+36

Use the same strategy to find a closed form for \{c_n\}, then for \{b_n\}, and finally \{a_n\}.

\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}

c_2=c_1+24\cdot1+36

c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2

c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3

and so on, up to

c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)

Recall the formula for the sum of consecutive integers:

1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2

\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)

\implies c_n=12n^2+24n+14

\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}

b_2=b_1+12\cdot1^2+24\cdot1+14

b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2

b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3

and so on, up to

b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)

Recall the formula for the sum of squares of consecutive integers:

1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6

\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)

\implies b_n=4n^3+6n^2+4n+1

\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}

a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1

a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2

a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3

\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1

\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4

\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)

\implies a_n=n^4+1

4 0
3 years ago
Other questions:
  • F(x) = x(2x/2)/x(x+5)(x+6)^2 <br><br> Find the vertical asymptotes?
    10·1 answer
  • Can some1 pls help me on number 13 and 14PLEASSE and thank you
    6·1 answer
  • Grayson knits 17 squares on Thursday. He knits 5 more squares each day from Friday through Saturday. How many squares does Grays
    5·1 answer
  • What is 42% expressed as a fraction? A 42%/1 B 21/50 C 42/10
    13·1 answer
  • Which simplified ratio correctly compares 12 yards to 20 ft<br><br> 5:9<br> 5:3<br> 3:5<br> 9:5
    8·1 answer
  • Charlie wants to order lunch for his friends he'll order 6 sandwiches and a $2 kids meal for his little brother charlie has $32
    9·1 answer
  • Can you answer these questions I need them today 10 points if you do
    7·1 answer
  • Sam counted 12 liters of hand sanitizer in the storage cabinet I lefills tihe
    12·1 answer
  • Challenge!<br><br> A. 13<br> B. 24 <br> C. 6<br> D. 34
    12·1 answer
  • *PLEASE HELP* 100 points * *any spam will be reported*
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!