Answer:
Net electric field, 
Explanation:
Given that,
Charge 1, 
Charge 2, 
distance, d = 3.2 cm = 0.032 m
Electric field due to charge 1 is given by :



Electric field due to charge 2 is given by :



The point charges have opposite charge. So, the net electric field is given by the sum of electric field due to both charges as :



So, the electric field strength at the midpoint between the two charges is 91406.24 N/C. Hence, this is the required solution.
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Answer:
22 m/s
Explanation:
PEf +KEf =PE0 +KE0 →PE0 −PEf =KEf
−mgΔy= 1 mv2 →v= −2gΔy = −2(9.8 m/s2)(−25 m)=22 m/s
Answer:
D. Hypnosis can make the subjects talk, but they talk only about their childhoods.
Explanation:
Answer:
Only kinetic.
Explanation:
Potential energy means it has the potential to move. Not something already in motion.