Answer
= 60
Hope it helps:)
Hello there.
<span>If we increase the force applied to an object and all other factors remain the same that amount of work will
</span><span>C. Increase
</span>
Answer:
The potential energy of the more massive one is twice that of the other.
Explanation:
Potential energy is given by
<em>PE</em> = <em>mgh</em>
where <em>m</em> = mass of body, <em>g</em> = acceleration of gravity and <em>h</em> = height or elevation.
For the less massive car, let the mass be
. Then its <em>PE</em> is

For the massive car, let the mass be
. Its <em>PE</em> is

But 

Hence, the potential energy of the more massive one is twice that of the other.
Answer:
ac = 3.92 m/s²
Explanation:
In this case the frictional force must balance the centripetal force for the car not to skid. Therefore,
Frictional Force = Centripetal Force
where,
Frictional Force = μ(Normal Force) = μ(weight) = μmg
Centripetal Force = (m)(ac)
Therefore,
μmg = (m)(ac)
ac = μg
where,
ac = magnitude of centripetal acceleration of car = ?
μ = coefficient of friction of tires (kinetic) = 0.4
g = 9.8 m/s²
Therefore,
ac = (0.4)(9.8 m/s²)
<u>ac = 3.92 m/s²</u>
Answer:
0.358g
Explanation:
Density of Helium = 0.179g/L
ρ=m/v
m=ρv
when the volume was 2L
m1= 0.179*2
m1=0.358g
when the volume increased to 4L
m2= 0.179*4
m2=0.716g
gram of helium added = 0.716g-0.358g
=0.358g