Answer:
(a)
and
are indeed mutually-exclusive.
(b)
, whereas
.
(c)
.
(d)
, whereas 
Step-by-step explanation:
<h3>(a)</h3>
means that it is impossible for events
and
to happen at the same time. Therefore, event
and
are mutually-exclusive.
<h3>(b)</h3>
By the definition of conditional probability:
.
Rearrange to obtain:
.
Similarly:
.
<h3>(c)</h3>
Note that:
.
In other words,
and
are collectively-exhaustive. Since
and
are collectively-exhaustive and mutually-exclusive at the same time:
.
<h3>(d)</h3>
By Bayes' Theorem:
.
Similarly:
.
Substitute

, so that

![\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1x\dfrac{\mathrm dy}{\mathrm dz}\right]=-\dfrac1{x^2}\dfrac{\mathrm dy}{\mathrm dz}+\dfrac1x\left(\dfrac1x\dfrac{\mathrm d^2y}{\mathrm dz^2}\right)=\dfrac1{x^2}\left(\dfrac{\mathrm d^2y}{\mathrm dz^2}-\dfrac{\mathrm dy}{\mathrm dz}\right)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%5Cright%5D%3D-%5Cdfrac1%7Bx%5E2%7D%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%2B%5Cdfrac1x%5Cleft%28%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dz%5E2%7D%5Cright%29%3D%5Cdfrac1%7Bx%5E2%7D%5Cleft%28%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dz%5E2%7D-%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%5Cright%29)
Then the ODE becomes


which has the characteristic equation

with roots at

. This means the characteristic solution for

is

and in terms of

, this is

From the given initial conditions, we find


so the particular solution to the IVP is
It seems you double the amount each day. keep doing that until you get to 15
Answer:
log(.25)
Step-by-step explanation:

It’s c the time to climb in the function of its height