Answer:
(A) There should have been 5 outcomes of HT
(B) The experimental probability is greater than the theoretical probability of HT.
Step-by-step explanation:
Given
-- Sample Space
--- Sample Size
Solving (a); theoretical outcome of HT in 20 tosses
First, calculate the theoretical probability of HT


Multiply this by the number of tosses


<em></em>
Solving (b); experimental probability of HT
Here, we make use of the table


---- Experimental Probability
In (a), the theoretical probability is:

---- Experimental Probability
By comparison;
