F(x)=x^2+2x+1 & g(x)=3(x+1)^2
now, f(x)+g(x)
=x^2+2x+1+3(x+1)^2
=x^2+2x+1+3(x^2+2x+1)
=x^2+2x+1+3x^2+6x+3
=4x^2+8x+4<===answer(c)
next:
f(x)=x^2-1 & g(x)=x+3
now, f(g(x))=(x+3)^ -1
=x^2+6x+9-1
=x^2+6x+8<====answer(b)
i solve two of ur problems.
now try the 3rd one that is similar to no. 1
and try the last two urself.
Answer:
a^2 + 2ab + b^2 - c^2
Step-by-step explanation:
When you multiply all the terms together you get a^2 + ab + ac + ab + b^2 + bc - ac - bc - c^2. Then you can just combine like terms and simplify it to a^2 + 2ab + b^2 - c^2. Hope this helps :)
Using the normal distribution, it is found that 0.26% of the items will either weigh less than 87 grams or more than 93 grams.
In a <em>normal distribution</em> with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of 90 grams, hence
.
- The standard deviation is of 1 gram, hence
.
We want to find the probability of an item <u>differing more than 3 grams from the mean</u>, hence:



The probability is P(|Z| > 3), which is 2 multiplied by the p-value of Z = -3.
- Looking at the z-table, Z = -3 has a p-value of 0.0013.
2 x 0.0013 = 0.0026
0.0026 x 100% = 0.26%
0.26% of the items will either weigh less than 87 grams or more than 93 grams.
For more on the normal distribution, you can check brainly.com/question/24663213