According to the information in the graph, it can be inferred that the amount of solute that will precipitate out of solution at 20°C is 130 grams.
<h3>How to calculate the amount of solute that precipitates out of solution?</h3>
To calculate the amount of solute that precipitates out of solution we must identify the solute data at 80°C and 20°C and identify the difference as shown below:
- Quantity of solute at 80°C: 170 grams.
- Quantity of solute at 20°C: 40 grams.
- 170 grams - 40 grams = 130 grams
According to the above, the amount of solute that will precipitate out of solution due to the change in temperature is 130 grams of KNO3.
Note: This question is incomplete because the graph is missing. Here is the graph
Learn more about solute in: brainly.com/question/7932885
#SPJ1
Answer : The mass of
dissolved will be, 0.2365 grams
Explanation :
First we have to calculate the concentration of
.
As we know that,

where,
= concentration of
= ?
= partial pressure of
= 1.65 atm
= Henry's law constant = 
Now put all the given values in the above formula, we get:


The concentration of
= 
Now we have to calculate the moles of 


Now we have to calculate the mass of 


Therefore, the mass of
dissolved will be, 0.2365 grams
Answer: The value of
is 0.0057
Explanation:
Initial moles of
= 0.900 mole
Volume of container = 2.00 L
Initial concentration of
equilibrium concentration of
[/tex]
The given balanced equilibrium reaction is,
Initial conc. 0.450 M 0 0
At eqm. conc. (0.450 -2x) M (2x) M (x) M
The expression for equilibrium constant for this reaction will be,
we are given : x = 0.055
Now put all the given values in this expression, we get :
Thus the value of the equilibrium constant is 0.0057
Given :
Mass of oxygen containing carbon monoxide (CO) is 2.666 gram .
To Find :
How many grams of carbon (C) would be present in carbon monoxide (CO) that contains 2.666 grams of oxygen (O) .
Solution :
By law of constant composition , a given chemical compound always contains its component elements in fixed ratio (by mass) and does not depend on its source and method of preparation.
So , volume of solution does not matter .
Moles of oxygen ,
.
Now , molecule of CO contains 1 mole of C .
So , moles of C is also 0.167 mole .
Mass of carbon ,
.
Therefore , mass of carbon is 2 grams .
Hence , this is the required solution .