Answer:
Cubic polynomial has zeros at x=−1x=−1 and 22, is tangent to x−x−axis at x=−1x=−1, and passes through the point (0,−6)(0,−6).
So cubic polynomial has double zero at x=−1x=−1, and single zero at x=2x=2
f(x)=a(x+1)2(x−2)f(x)=a(x+1)2(x−2)
f(0)=−6f(0)=−6
a(1)(−2)=−6a(1)(−2)=−6
a=3a=3
f(x)=3(x+1)2(x−2)f(x)=3(x+1)2(x−2)
f(x)=3x3−9x−6
Answer:
-19/132
Step-by-step explanation:
To add fractions, find the lowest common multiple of the two denominators and multiply accordingly to make both denominators the same. In this case, the lowest common multiple of 11 and 12 is 132, so we need to multiply the first number by 12 and the second by 11. So we get
=
=

There are 5 solutions for this system.
x^2 + 4y^2 = 100 ____1
4y - x^2 = -20 ____2
Add both 1 & 2 together. x^2 gets cancelled
4y^2 + 4y = 80 (send 80 to the other side and divide by 4)
Then equation the becomes : y^2 + y -20 =0
Now factorise the equation: (y+5) (y-4) = 0
Solve for y : y = -5 and y = 4
Using the values of y to find the values of x. From equation 1:
x^2 = 100 - 4y^2 x = /100 - 4y^2 (/ means square root) Replace values of y
y = -5, x = /100 - 4(-5)^2 = /100 - 100 = 0
y = 4, x = /100 - 4(4)^2 = / 100 - 64 = /36 = -6 or 6
Thus we have 6 solutions y = -5, 4 and x = -6, 0, 6
Answer:

Step-by-step explanation:
we know that
<u><em>Combinations</em></u> are a way to calculate the total outcomes of an event where order of the outcomes does not matter.
To calculate combinations, we will use the formula

where
n represents the total number of items
r represents the number of items being chosen at a time.
In this problem

substitute

simplify




Answer:
(12÷2)×8
Step-by-step explanation: