Consider the following sets of sample data: A: $29,400, $30,900, $21,000, $33,200, $21,300, $24,600, $29,500, $22,500, $35,200,
Lana71 [14]
Answer:
CV for A = 21.8%
CV for B = 15.5%
Step-by-step explanation:
The formula for coefficient of variation is:
CV = Standard Deviation / Mean
So,
For A:
Mean = Sum/No. of items
= 391300/14
=$27950
and
SD = $6085.31
CV for A = 6085.31/27950 * 100
=21.77%
Rounding off to one decimal
CV for A = 21.8%
For B:
Mean = Sum/No. of items
= 43.58/11
=3.96
and
SD = 0.615
CV for B = 0.615/3.96 * 100
=15.53%
=15.5% ..
<u>Options</u>
- Counting rule for permutations
- Counting rule for multiple-step experiments
- Counting rule for combinations
- Counting rule for independent events
Answer:
(C)Counting rule for combinations
Step-by-step explanation:
When selecting n objects from a set of N objects, we can determine the number of experimental outcomes using permutation or combination.
- When the order of selection is important, we use permutation.
- However, whenever the order of selection is not important, we use combination.
Therefore, The counting rule that is used for counting the number of experimental outcomes when n objects are selected from a set of N objects where order of selection is not important is called the counting rule for combinations.
A 40% chance
Unless!
*wispers*
It’s a trick question?