The answer to this question is 20 placed in order
We are given a graph of a quadratic function y = f(x) .
We need to find the solution set of the given graph of a quadratic function .
<em>Note: Solution of a function the values of x-coordinates, where graph cut the x-axis.</em>
For the shown graph, we can see that parabola in the graph doesn't cut the x-axis at any point.
It cuts only y-axis.
Because solution of a graph is only the values of x-coordinates, where graph cut the x-axis. Therefore, there would not by any solution of the quadratic function y = f(x).
<h3>So, the correct option is 2nd option :∅.</h3>
Answer:
one and fifty six hundred thousandths
Exercise 1:
exponential decay:
The function is given by:
y = A (b) ^ ((1/3) * t)
Where,
A = 600
We look for b:
(480/600) * (100) = 80%
b = 0.8
Substituting:
y = 600 * (0.8) ^ ((1/3) * t)
We check for t = 6
y = 600 * (0.8) ^ ((1/3) * 6)
y = 384
Answer:
exponential decay:
y = 600 * (0.8) ^ ((1/3) * t)
Exercise 2:
linear:
The function is given by:
y = ax + b
Where,
a = -60 / 2 = -30
b = 400
Substituting we have:
y = -30 * x + 400
We check for x = 4
y = -30 * 4 + 400
y = 280
Answer:
linear:
y = -30 * x + 400
Exercise 3:
exponential growth:
The function is given by:
y = A (b) ^ ((1/3) * t)
Where,
A = 512
We look for b:
(768/512) * (100) = 150%
b = 1.5
Substituting:
y = 512 * (1.5) ^ ((1/2) * t)
We check for t = 4
y = 512 * (1.5) ^ ((1/2) * 4)
y = 1152
Answer:
exponential growth:
y = 512 * (1.5) ^ ((1/2) * t)
Answer:
a black leather jacket if u have one
Step-by-step explanation:
your welcome!