----------------------------------------------------------
Given information
----------------------------------------------------------
Area = 3x² + 14x + 8
Length = x + 4
----------------------------------------------------------
Formula
----------------------------------------------------------
Area = Length x Width
----------------------------------------------------------
Find Width
----------------------------------------------------------
3x² + 14x + 8 = (x + 4) x width
width = (3x² + 14x + 8) ÷ (x + 4)
width = (x+4)(3x+2) ÷ (x + 4)
width = 3x + 2
----------------------------------------------------------
Answer: The width is 3x + 2 (Answer C)
----------------------------------------------------------
Answer:
The surface area of the composite figure is
Step-by-step explanation:
we know that
The surface area of the composite figure is equal to the surface area of the rectangular prism of the bottom plus the lateral area o the rectangular prism of the top
so
Step 1
Find the surface area of the rectangular prism of the bottom
The surface area is equal to
Find the area of the base B
substitute
Step 2
Find the lateral area of the rectangular prism of the top
The lateral area is equal to
substitute
Step 3
Find the surface area of the composite figure
Let u = x.lnx, , w= x and t = lnx; w' =1 ; t' = 1/x
f(x) = e^(x.lnx) ; f(u) = e^(u); f'(u) = u'.e^(u)
let' find the derivative u' of u
u = w.t
u'= w't + t'w; u' = lnx + x/x = lnx+1
u' = x+1 and f'(u) = ln(x+1).e^(xlnx)
finally the derivative of f(x) =ln(x+1).e^(x.lnx) + 2x
Well here is the thing is the answer is 10