O2- stands for superoxide anion, S2- stands for sulfide anion, H- stands for hydrogen anion, and Na+ stands for sodium this all ions possess the electron configuration of noble gas because each of them (O2-, S2-, H-, and Na+) has a full outer shell.
We have to add the both half cell equations and eliminate the number of electrons lost/gained.
<h3>What modification must Kim make to the equations?</h3>
The term redox reaction is a type of reaction that occurs when an electron is lost or gained in a reaction system. We can see that in this reaction, zinc looses two electron which are gained by copper.
If we want to obtain the equation 4.9 which is the overall equation of the redox reaction from the various half cell equations then we have to add the both half cell equations and eliminate the number of electrons lost/gained.
Learn kore about redox reaction:brainly.com/question/13293425
#SPJ1
The interactions of climate, living organisms, and landscape .
Answer:
The answer to your question is V2 = 434.7 l
Explanation:
Data
Volume 1 = V1 = 240 l Volume 2 = ?
Temperature 1 = T1 = 479°K Temperature 2 = T2 = 293°K
Pressure 1 = P1 = 300 KPa Pressure 2 = P2 = 101.325 Kpa
Process
1.- Use the combined gas law to solve this problem
P1V1/T1 = P2V2/t2
-Solve for V2
V2 = P1V1T2 / T1P2
2.- Substitution
V2 = (300)(240)(293) / (479)(101.325)
3.- Simplification
V2 = 21096000 / 48534.675
4.- Result
V2 = 434.7 l
<span>0.0687 m
The balanced equation is
BaCl2 + Na2SO4 ==> BaSO4 + 2 NaCl
Looking at the equation, it indicates that there's a 1 to 1 ratio of BaCl2 and Na2SO4 in the reaction. So the number of moles of each will be equal. Now calculate the number of moles of Na2SO4 we had. Start by looking up atomic weights.
Atomic weight sodium = 22.989769
Atomic weight sulfur = 32.065
Atomic weight oxygen = 15.999
Molar mass Na2SO4 = 2 * 22.989769 + 32.065 + 4 * 15.999 = 142.040538 g/mol
Moles Na2SO4 = 0.554 g / 142.040538 g/mol = 0.003900295 mol
Molarity is defined as moles per liter, so let's do the division.
0.003900295 mol / 0.0568 l = 0.068667165 mol/l = 0.068667165 m
Rounding to 3 significant figures gives 0.0687 m</span>