<u>Answer:</u> The pH change of the buffer is 0.30
<u>Explanation:</u>
To calculate the pH of basic buffer, we use the equation given by Henderson Hasselbalch:
![pOH=pK_b+\log(\frac{[\text{conjugate acid}]}{[\text{base}]})](https://tex.z-dn.net/?f=pOH%3DpK_b%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7Bconjugate%20acid%7D%5D%7D%7B%5B%5Ctext%7Bbase%7D%5D%7D%29)
.....(1)
We are given:
= negative logarithm of base dissociation constant of aniline = 9.13
![[C_6H_5NH_3^+]=0.306M](https://tex.z-dn.net/?f=%5BC_6H_5NH_3%5E%2B%5D%3D0.306M)
![[C_6H_5NH_2]=0.418M](https://tex.z-dn.net/?f=%5BC_6H_5NH_2%5D%3D0.418M)
pOH = ?
Putting values in equation 1, we get:
![pOH=9.13+\log(\frac{0.306}{0.418})\\\\pOH=8.99](https://tex.z-dn.net/?f=pOH%3D9.13%2B%5Clog%28%5Cfrac%7B0.306%7D%7B0.418%7D%29%5C%5C%5C%5CpOH%3D8.99)
To calculate pH of the solution, we use the equation:
![pH+pOH=14\\pH_{initial}=14-8.99=5.01](https://tex.z-dn.net/?f=pH%2BpOH%3D14%5C%5CpH_%7Binitial%7D%3D14-8.99%3D5.01)
To calculate the molarity, we use the equation:
![\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}](https://tex.z-dn.net/?f=%5Ctext%7BMolarity%20of%20the%20solution%7D%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20solute%7D%7D%7B%5Ctext%7BVolume%20of%20solution%20%28in%20L%29%7D%7D)
Moles hydrochloric acid solution = 0.124 mol
Volume of solution = 1 L
Putting values in above equation, we get:
![\text{Molarity of HCl}=\frac{0.124}{1L}\\\\\text{Molarity of HCl}=0.124M](https://tex.z-dn.net/?f=%5Ctext%7BMolarity%20of%20HCl%7D%3D%5Cfrac%7B0.124%7D%7B1L%7D%5C%5C%5C%5C%5Ctext%7BMolarity%20of%20HCl%7D%3D0.124M)
The chemical reaction for aniline and HCl follows the equation:
![C_6H_5NH_2+HCl\rightarrow C_6H_5NH_3^++Cl^-](https://tex.z-dn.net/?f=C_6H_5NH_2%2BHCl%5Crightarrow%20C_6H_5NH_3%5E%2B%2BCl%5E-)
<u>Initial:</u> 0.418 0.124 0.306
<u>Final:</u> 0.294 - 0.430
Calculating the pOH by using using equation 1:
= negative logarithm of base dissociation constant of aniline = 9.13
![[C_6H_5NH_3^+]=0.430M](https://tex.z-dn.net/?f=%5BC_6H_5NH_3%5E%2B%5D%3D0.430M)
![[C_6H_5NH_2]=0.294M](https://tex.z-dn.net/?f=%5BC_6H_5NH_2%5D%3D0.294M)
pOH = ?
Putting values in equation 1, we get:
![pOH=9.13+\log(\frac{0.430}{0.294})\\\\pOH=9.29](https://tex.z-dn.net/?f=pOH%3D9.13%2B%5Clog%28%5Cfrac%7B0.430%7D%7B0.294%7D%29%5C%5C%5C%5CpOH%3D9.29)
To calculate pH of the solution, we use the equation:
![pH+pOH=14\\pH_{final}=14-9.29=4.71](https://tex.z-dn.net/?f=pH%2BpOH%3D14%5C%5CpH_%7Bfinal%7D%3D14-9.29%3D4.71)
Calculating the pH change of the solution:
![\Delta pH=pH_{initial}-pH_{final}\\\\\Delta pH=5.01-4.71=0.30](https://tex.z-dn.net/?f=%5CDelta%20pH%3DpH_%7Binitial%7D-pH_%7Bfinal%7D%5C%5C%5C%5C%5CDelta%20pH%3D5.01-4.71%3D0.30)
Hence, the pH change of the buffer is 0.30