Explanation:
A.
The first student will be on the lower bunk on the first floor because 1. They want on the lowest available floor and 2. They want to be in a lower bunk if available.
B.
7 students are in the TOP bunks because 1. They want on the lowest available floor and 2. They want to be in a lower bunk if available. Therefore, all the rooms up till the third floor (Remember, third floor has 3 suites), so the first floor is filled - 1 person on the top bunk, 2 floor is filled- 4 persons and the third floor; the first suite is filled - 1 person and the second suite is a little partially filled- 1 person.
C.
Following the criteria 1, 2 and 3, the 21st student occupies the third suite on the third floor because all the floors (1 and 2) are occupied so the third suite on the third floor is still vacant.
D.
From the criteria there are therefore 10 persons at the TOP bunk. All the rooms up till the third floor are filled, so the first floor is filled - 1 person on the top bunk, second floor is filled (2 suites) - 4 persons and the third floor; the first suite and second suite is filled - 4 persons; the thirs suite has 6 persons present so 1 person is at the top bunk.
They have similar properties because they have the same number of valence electrons
Weight=mass×g=10×9.8=98N
<span>hope it helped :-)</span>
Answer:

Explanation:
We have the equation for ideal gas expressed as:
PV=nRT
Being:
P = Pressure
V = Volume
n = molar number
R = Universal gas constant
T = Temperature
From the statement of the problem I infer that we are looking to change the volume and the pressure, maintaining the temperature, so I can calculate the right side of the equation with the data of the initial condition of the gas:



So

Now, as for the final condition:


clearing


