Answer:
The molecule has a bent geometry
Explanation:
Let us look again at the principles of VSEPR theory. The shape of a molecule depends on the number of electron pairs that surround the valence shell of the central atom in the molecule.
Lone pairs distort the molecular geometry away from what is expected on the basis of VSEPR theory.
The molecule described in the question has the form AEX2. Two substituents and one lone pair form three electron domains around the central atom. The expected geometry is trigonal planar but the observed molecular geometry is bent because of the lone pairs present.
ΔHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
Bond enthalpies,
N ≡ N ⇒ 945 kJ mol⁻¹
N - Cl ⇒ 192 kJ mol⁻¹
Cl - Cl⇒ 242 kJ mol⁻¹
According to the balanced equation,
ΣδΗ(bond breaking) = N ≡ N x 1 + Cl - Cl x 3
= 945 + 3(242)
= 1671 kJ mol⁻¹
ΣδΗ(bond making) = N - Cl x 3 x 2
= 192 x 6
= 1152 kJ mol⁻¹
δHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
= 1671 kJ mol⁻¹ - 1152 kJ mol⁻¹
= 519 kJ mol⁻¹
Answer: If the gold in the crown was mixed with a less-valuable metal such as bronze of copper then this affects its density by making it to weigh even more and if it weighs more then it has less of chance to float. Observe: Drag each of the crowns into the liquid.
Explanation:
Answer:
4.1 moles of FeCl₃
Explanation:
The reaction expression is given as shown below:
2Fe + 3Cl₂ → 2FeCl₃
Number of moles of Cl₂ = 6.1moles
So;
We know that from the balanced reaction expression:
3 moles of Cl₂ will produce 2 moles of FeCl₃
Therefore 6.1moles of Cl₂ will produce
= 4.1 moles of FeCl₃
The number of moles is 4.1 moles of FeCl₃
Explanation:
Round 87.073 meters to 3 significant figures. write your answer in scientific notation. step 1: 87.073 rounds to step 2: write scientific notation : meters...