Explanation: Hydrogen bonds are the strongest one of the intermolecular forces. A hydrogen bond is a bond between hydrogen in one molecule or the other ones are fluorine and nitrogen. So it's between a hydrogen in one molecule and an electronegative atom in another molecule. So they always involve hydrogen.
12 Dahlias, 30 Tulips
12:30
12/2=6
30/6=5
12/6=2
=2:5
A) can enter from the surroundings, but cannot escape to the surroundings
Answer:
Ecell = +0.25V
Explanation:
the half-cell reactions for a voltanic cell
cathode(reduction): 2H⁺(aq) + 2e⁻ ------- H₂(g)
anode(oxidation): 2AgCl(s) ------- 2Ag⁺(aq) + 2Cl⁻ + 2e⁻
we have the standard cell potential E⁺cell = 0.18V at 80C respectively
Q = [H⁺]/[Cl⁻]
sub for [H+] = 0.10M and [Cl-] = 1.5M
Q= 0.1M/1.5M
Q = 0.067
Ecell = E⁺cell -
logQ
= 0.18 -
log 0.067
0.18- 0.059(-1.174)
Ecell = +0.25V
Atomic Number of Lithium is 3, so it has 3 electrons in its neutral state. Also, Li₂ will have 6 electrons. But the chemical formula we are given has a negative charge on it (i.e Li₂⁻) so there is an additional electron (RED) present on this compound. So, the total number of electrons are 7. The
MOT diagram for this compound is shown below. According to diagram we are having 4 electrons in Bonding Molecular Orbitals (
BMO) and 3 electrons in Anti-Bonding Molecular Orbitals (
ABMO). Bond Order is calculated as,
Bond Order = (# of e⁻s in BMO - # of e⁻s in ABMO) ÷ 2
Bond Order = (4 - 3) ÷ 2
Bond Order = 1 ÷ 2
Or,
Bond Order = 1/2Or,
Bond Order = 0.5