Answer:
Power_input = 85.71 [W]
Explanation:
To be able to solve this problem we must first find the work done. Work is defined as the product of force by distance.

where:
W = work [J] (units of Joules)
F = force [N] (units of Newton)
d = distance [m]
We need to bear in mind that the force can be calculated by multiplying the mass by the gravity acceleration.
Now replacing:
![W = (80*10)*3\\W = 2400 [J]](https://tex.z-dn.net/?f=W%20%3D%20%2880%2A10%29%2A3%5C%5CW%20%3D%202400%20%5BJ%5D)
Power is defined as the work done over a certain time. In this way by means of the following formula, we can calculate the required power.

where:
P = power [W] (units of watts)
W = work [J]
t = time = 40 [s]
![P = 2400/40\\P = 60 [W]](https://tex.z-dn.net/?f=P%20%3D%202400%2F40%5C%5CP%20%3D%2060%20%5BW%5D)
The calculated power is the required power. Now as we have the efficiency of the machine, we can calculate the power that is introduced, to be able to do that work.
![Effic=0.7\\Effic=P_{required}/P_{introduced}\\P_{introduced}=60/0.7\\P_{introduced}=85.71[W]](https://tex.z-dn.net/?f=Effic%3D0.7%5C%5CEffic%3DP_%7Brequired%7D%2FP_%7Bintroduced%7D%5C%5CP_%7Bintroduced%7D%3D60%2F0.7%5C%5CP_%7Bintroduced%7D%3D85.71%5BW%5D)
Answer:
the effects that a jet and the magnetic fields have on a ProStar Is :
Explanation:
over the years scientist have found out that magnetic fields and the Jets carry away angular momentum , which helps the ProStar grow more in size .
An example of a hypothesis for an experiment might be: “A basketball will bounce higher if there is more air it”
Step one would be to make an observation... “hey, my b-ball doesn’t have much air in it, and it isn’t bouncing ver high”
Step two is to form your hypothesis: “A basketball will bounce higher if there is more air it”
Step three is to test your hypothesis: maybe you want to drop the ball from a certain height, deflate it by some amount and then drop it from that same height again, and record how high the ball bounced each time.
Here the independent variable is how much air is in the basketball (what you want to change) and the dependent variable is how high the b-ball will bounce (what will change as a result of the independent variable)
Step four is to record all of your results and step five is to analyze that data. Does your data support your hypothesis? Why or why not?
You should only test one variable at a time because it is easier to tell why the results are how they are; you only have one cause.
Hope this helps!
Answer:
Right now I have three.
Explanation: Thanks for the points luv ^-^.