Answer:
3727.24km/h
Explanation:
Hello!
To solve this problem we must first know what is the distance from the earth to the moon, this will be our radius.
=384400Km
Then we find the distance traveled which would be the perimeter of a circle = 2πr, finally to find the speed we divide the distance traveled by 27 days.
Finally we use conversion factor to have the speed in km / h
solving

the moon is orbiting at speed of 3727.24km/h
A, 2 molcules
H2O is one molecule, it has 3 atoms (two hydrogen and one oxygen)
2 H2O are two water molecules
Answer:
The wavelength is 
Explanation:
From the question we are told that
The wavelength of the first light is 
The order of the first light that is being considered is
The order of the second light that is being considered is
Generally the distance between the fringes for the first light is mathematically represented as

Here D is the distance from the screen
and d is the distance of separation of the slit.
For the second light the distance between the fringes is mathematically represented as

Now given that both of the light are passed through the same double slit

=> 
=> 
=> 
=> 
Answer:
the no. of ejected electrons per second will increase.
Explanation:
In photoelectric effect, when a light is incident on a metal surface it ejects some electrons from the metal surface. The energy of photon of light must be equal to or greater than the work function of that metal. All the extra energy above the work potential appears as the kinetic energy of the ejected electrons. So, greater he energy of photon greater will be the kinetic energy of the ejected electrons.
A single photon interacts with a single electron and ejects it only if its energy is greater than work function. So, the increase in no. of photons per second means an increase in the intensity of laser beam. And greater no. of photons, will interact with greater no. of electrons. So, <u>the no. of ejected electrons per second will increase.</u>
Answer:
SKID
Explanation:
In general, airplane tracks are flat, they do not have cant, consequently the friction force is what keeps the bicycle in the circle.
Let's use Newton's second law, let's set a reference frame with the horizontal x-axis and the vertical y-axis.
Y axis y
N- W = 0
N = W
X axis (radial)
fr = m a
the acceleration in the curve is centripetal
a =
the friction force has the expression
fr = μ N
we substitute
μ mg = m v²/r
v =
we calculate
v =
v = 1,715 m / s
to compare with the cyclist's speed let's reduce to the SI system
v₀ = 18 km / h (1000 m / 1 km) (1 h / 3600 s) = 5 m / s
We can see that the speed that the cyclist is carrying is greater than the speed that the curve can take, therefore the cyclist will SKID