Answer:
The period of the sine curve is the length of one cycle of the curve. The natural period of the sine curve is 2π. So, a coefficient of b=1 is equivalent to a period of 2π. To get the period of the sine curve for any coefficient b, just divide 2π by the coefficient b to get the new period of the curve.
Step-by-step explanation:
I think it slopeeeeeeeeeeeeeeeeeeee
Answer:
91
Step-by-step explanation:
155-16s²
155- 16x2²
155- 16x4
155-64
91
We have
<span>Va(airplane)=150
East</span>
Vw(wind)=7.1
South East
<span>
</span><span>resulting vector R</span>
airplane
Vax=150 Vay=0 it only has component x
WindVwx=7.1*cos45=5.02
Vwy=7.1*sin45=-5.02
is negative because is South direction
|R|=(Rx^2+Ry^2) ^0.5
Rx=150+5.02=155.02
Ry=0-5.02=-5.02
<span>|R|=155.10
miles/hour South East</span>
Determine angle θ
Rx=R*cos(θ)
<span>Cos(θ)=Rx/R</span>
<span>Cos(θ)=155.02/155.10=0.9995</span>
θ =arc cos Rx/R
θ =1.8119 º
Rx represents the component in the East direction of the resultant force. Your contribution is given by both, the force of the plane and the wind. The contribution of the wind makes the airplane's speed greater
Ry represents the component in the South direction of the resulting force
Its contribution is exclusive of the wind since the airplane has no component
in this direction
|R| the force resulting from the combined action of the force of the plane and the force of the wind
θ represents the angle that forms the resultant force with respect to the x axis or east direction