7 times 4 =28 this is cuz there is seven days in a week and 7x4
Answer:
Step-by-step explanation:
Given data
Total units = 250
Current occupants = 223
Rent per unit = 892 slips of Gold-Pressed latinum
Current rent = 892 x 223 =198,916 slips of Gold-Pressed latinum
After increase in the rent, then the rent function becomes
Let us conside 'y' is increased in amount of rent
Then occupants left will be [223 - y]
Rent = [892 + 2y][223 - y] = R[y]
To maximize rent =

Since 'y' comes in negative, the owner must decrease his rent to maximixe profit.
Since there are only 250 units available;
![y=-250+223=-27\\\\maximum \,profit =[892+2(-27)][223+27]\\=838 * 250\\=838\,for\,250\,units](https://tex.z-dn.net/?f=y%3D-250%2B223%3D-27%5C%5C%5C%5Cmaximum%20%5C%2Cprofit%20%3D%5B892%2B2%28-27%29%5D%5B223%2B27%5D%5C%5C%3D838%20%2A%20250%5C%5C%3D838%5C%2Cfor%5C%2C250%5C%2Cunits)
Optimal rent - 838 slips of Gold-Pressed latinum
Answer:
a ≈ 14 or 6
Step-by-step explanation:
264 = π × a × (20 - a)
a(20 - a) =
≈ 84 (rounded off to nearest whole number)
Opening the brackets we get;
a² - 20a + 84 = 0
Applying the quadratic formula we get:
a ≈ 14 or 6
I believe the answer is D. because -12 + -1 equal -13
Sure, you can either simplify it further: 1/2 and you could also multiply by 2: 4/8