Answer:
g(0.9) ≈ -2.6
g(1.1) ≈ 0.6
For 1.1 the estimation is a bit too high and for 0.9 it is too low.
Step-by-step explanation:
For values of x near 1 we can estimate g(x) with t(x) = g'(1) (x-1) + g(1). Note that g'(1) = 1²+15 = 16, and for values near one g'(x) is increasing because x² is increasing for positive values. This means that the tangent line t(x) will be above the graph of g, and the estimates we will make are a bit too big for values at the right of 1, like 1.1, and they will be too low for values at the left like 0.9.
For 0.9, we estimate
g(0.9) ≈ 16* (-0.1) -1 = -2.6
g(1.1) ≈ 16* 0.1 -1 = 0.6
Answer:
A
Step-by-step explanation:
A) EA and ST
To solve this problem you must apply the proccedure shown below:
1. Let's round the value to the nearest hundredth. As you can see, the digit 8 is in the thousandths place and is greater than 5, therefore, you must round up to 0.038.
2. Now express the value as a single digit times a power of 10, as following:
x
Therefore, the answer is:
x