Some examples:
- the sun
- a flashlight turned on
- a light bulb
- stars
- fireflies
...hope i helped :)
<span>Answer:
Graham's law of gaseous effusion states that the rate of effusion goes by the inverse root of the gas' molar mass.
râšM = constant
Therefore for two gases the ratio rates is given by:
r1 / r2 = âš(M2 / M1)
For Cl2 and F2:
r(Cl2) / r(F2) = âš{(37.9968)/(70.906)}
= 0.732 (to 3.s.f.)</span>
Answer:
Q = 0.061 = Kc
Explanation:
Step 1: Data given
Temperature = 500 °C
Kc=0.061
1.14 mol/L N2
5.52 mol/L H2
3.42 mol/L NH3
Step 2: Calculate Q
Q=[products]/[reactants]=[NH3]²/ [N2][H2]³
If Qc=Kc then the reaction is at equilibrium.
If Qc<Kc then the reaction will shift right to reach equilibrium.
If Qc>Kc then the reaction will shift left to reach equilibrium.
Q = (3.42)² / (1.14 * 5.52³)
Q = 11.6964/191.744
Q = 0.061
Q = Kc the reaction is at equilibrium.
Answer:
398 mL
Explanation:
Using the equation for molarity,
C₁V₁ = C₂V₂ where C₁ = concentration before adding water = 8.61 mol/L and V₁ = volume before adding water, C₂ = concentration after adding water = 1.75 mol/L and V₂ = volume after adding water = 500 mL = 0.5 L
V₂ = V₁ + V' where V' = volume of water added.
So, From C₁V₁ = C₂V₂
V₁ = C₂V₂/C₁
= 1.75 mol/L × 0.5 L ÷ 8.61 mol/L
= 0.875 mol/8.61 mol/L
= 0.102 L
So, V₂ = V₁ + V'
0.5 L = 0.102 L + V'
V' = 0.5 L - 0.102 L
= 0.398 L
= 398 mL
So, we need to add 398 mL of water to the nitric solution.
It causes the water to evaporate from the earths surface so that it can cycle through again