Answer:

The Required horizontal force is 230.04N
Explanation:
Since the velocity is constant so acceleration is zero; a=0
Now the horizontal force required to move the pickup is equal to the frictional force.

where:
F_{Hn} is the required Force
u is the friction coefficient
m is the mass
g is gravitational acceleration=9.8m/s^2
Eq (1)
Now, weight increases by 42% and friction coefficient decreases by 19%
New weight=(1.42*m*g) and new friction coefficient=0.81u
Eq (2)
Divide Eq(2) and Eq (1)

The Required horizontal force is 230.04N
<h2>
Answer</h2>
The volume will be <u>increased</u>
<h2>
Explanation</h2>
Look at the formula

If the mass increase the density will be increased because of their direct relationship. But in the case of constant mass. The volume increase the density will decrease because there is an inverse relationship exists between them. In the inverse relationship, the two objects perform differently. for example, if you are going to inflate the balloon, its volume will increase but density decrease
Answer:
Option B and Option D are true
Explanation:
We are given;
Number of atoms in block A = 800
Energy content in block A = 20 quanta
Number of atoms in block B = 200
Energy content in block B = 80 quanta
The energy of a system which is an extensive quantity,depends on the mass or number of moles of the system. However, at equilibrium, the energy density of the two copper blocks will be equal. That is, each atom of Cu in the two blocks will, on average, have the same energy. Because block A has 4 times more atoms than block B, it will have 4 times more quanta of energy. Thus, option B is therefore true while option A is false.
Temperature is a measure of the average kinetic energy of the atoms in a material. Now, if each atom in blocks A and B have the same average energy, then the temperatures of blocks A and B will be equal at equilibrium. Thus, option D is true.
Entropy of a system is an extensive quantity that depends on the the mass or number of atoms in the system. Because block A is bigger than block B, it will have higher entropy. However, that the specific entropy (the entropy per mole or per unit mass) is an intensive quantity -- it is independent of the size of a system. The molar entropy of blocks A and B are equal at equilibrium. Thus option C is false.