The force that acts on all objects, all the time on Earth is gravitational force.
The force that surface exert on an object perpendicularly is normal reaction.
<h3>What force acts on all objects, all the time on Earth?</h3>
- Force due to gravity is gravitational pull on objects due to its position on earth's surface.
The force due to gravity on object's is calculated by applying Newton's second law of motion as follows;
F = mg
where;
- m is the mass of the object
- g is acceleration due to gravity
The force that surface exert on an object perpendicularly is normal reaction.
Thus, the force that acts on all objects, all the time on Earth is gravitational force.
Learn more about force of gravity here: brainly.com/question/2537310
Answer:
Atoms with the same number of protons but with different electrical charges are different ions
Explanation:
Ions are defined as those atoms or molecules which carry charge
Saludos!
Respuesta:28,64 m/s.
Explicación:Datos:
Altura o distancia recorrida: 40 m
Vo: 6 m/s
Aceleración de la gravedad: 9,81 m/s²
El ejercicio puede ser resuelto facilmente utilizando la siguiente formula, sin embargo es posible realizarlo utilizando formulas diferentes.
Entonces tenemos que:

Es importante saber que al estar lanzando el ladrillo hacia abajo, el sentido del movimiento sigue el sentido de la gravedad, es decir es necesario que tomes el valor de la gravedad como positivo (+) y no negativo (-) como normalmente se usa.
Sustituyendo tenemos que:

Que tengas un buen día!
Explanation:
Fluids exert both drag and lift forces on moving objects. Drag is the frictional force opposing motion. Lift is the force perpendicular to motion.
Some objects, like parachutes, are designed with large cross sectional areas to increase drag force. Usually though, objects are designed to minimize drag force. It's why cars, planes, and boats have sleek shapes.
Airplane wings have shapes called airfoils that generate lift. It's what makes them fly. The same shape is found in racecar spoilers. These spoilers use lift force to push down on the rear tires, increasing traction.