Answer:
vi = 4.77 ft/s
Explanation:
Given:
- The radius of the surface R = 1.45 ft
- The Angle at which the the sphere leaves
- Initial velocity vi
- Final velocity vf
Find:
Determine the sphere's initial speed.
Solution:
- Newton's second law of motion in centripetal direction is given as:
m*g*cos(θ) - N = m*v^2 / R
Where, m: mass of sphere
g: Gravitational Acceleration
θ: Angle with the vertical
N: Normal contact force.
- The sphere leaves surface at θ = 34°. The Normal contact is N = 0. Then we have:
m*g*cos(θ) - 0 = m*vf^2 / R
g*cos(θ) = vf^2 / R
vf^2 = R*g*cos(θ)
vf^2 = 1.45*32.2*cos(34)
vf^2 = 38.708 ft/s
- Using conservation of energy for initial release point and point where sphere leaves cylinder:
ΔK.E = ΔP.E
0.5*m* ( vf^2 - vi^2 ) = m*g*(R - R*cos(θ))
( vf^2 - vi^2 ) = 2*g*R*( 1 - cos(θ))
vi^2 = vf^2 - 2*g*R*( 1 - cos(θ))
vi^2 = 38.708 - 2*32.2*1.45*(1-cos(34))
vi^2 = 22.744
vi = 4.77 ft/s
Weight equals mass*gravity
W = mg
Given m = 3.1 kg, g = 9.8 m/s^2
W = (3.1)(9.8)
W = 30.38
Answer:
protected under students first amendment rights
Explanation:
did the studyisland :)
Answer:
1) D, 2) D, 3) B, 4) B, 5) C
Explanation:
You are asked to select the correct answer
1) The conservation of energy is one of the most important principles of physics that allows solving countless problems in life.
the correct answer is D
2) when a body falls, the gravitational potential energy is transformed into kinetic energy and both are transformed into thermal energy
the correct answer is D
3) When the gravitational potential energy is maximum, the kinetic energy is minimum and when the kinetic energy is maximum, the gravitational energy is minimum.
Correct answer B
4) speed is defined by
v = x / t
so the correct answer is B in the SI system
5) when we repeat a measurement several times, the random or statistical errors decrease, therefore the confidence of the measurement increases.
The correct answer is C