Answer:
6, 2, 2/3, 2/9, 2/27, 2/81
Step-by-step explanation:
The nth term of a geometric progression is expressed as;
Tn = ar^n-1
a is the first term
n is the number of terms
r is the common ratio
Given
a = 6
r = 1/3
when n = 1
T1 = 6(1/3)^1-1
T1 = 6(1/3)^0
T1 = 6
when n = 2
T2= 6(1/3)^2-1
T2= 6(1/3)^1
T2 = 2
when n = 3
T3 = 6(1/3)^3-1
T3= 6(1/3)^2
T3= 6 * 1/9
T3 = 2/3
when n = 4
T4 = 6(1/3)^4-1
T4= 6(1/3)^3
T4= 6 * 1/27
T4 = 2/9
when n = 5
T5 = 6(1/3)^5-1
T5= 6(1/3)^4
T5= 6 * 1/81
T5 = 2/27
when n = 6
T6 = 6(1/3)^6-1
T6= 6(1/3)^5
T6= 6 * 1/243
T6 = 2/81
Hence the first six terms are 6, 2, 2/3, 2/9, 2/27, 2/81
JM=12
JL= 14
MN=?
MK=?
VT= 11
UV= 9
RS=?
ST=?
GF=23
HF=20
GH=?
GE=?
M<1=?
M<2=?
M<3=?
M<4=?
M<5=?
M<6=?
M<7=?
M<8 = 90 degrees
WXZ = 34 degrees
WVZ=90 degrees
ZYW= 56 degrees
These are the only answers I knew, I’m sorry I couldn’t find the rest. If I do find more answers, I’ll comment them.
PART A
Change the fractions into improper fractions
pablo - rosa = 4 4/9 - 3 5/12
pablo - rosa = 40/9 - 41/12
Equalize the denominator of the fractions
I equalize them to 36. If the denominator 9 is multiplied by 4, so is the numerator. If the denominator 12 is multiplied by 3, so is the numerator.
pablo - rosa = 40/9 - 41/12
pablo - rosa = (40 × 4)/(9 × 4) - (41 × 3)/(12 × 3)
pablo - rosa = 160/36 - 123/36
pablo - rosa = 37/36
Change it to mixed fraction
pablo - rosa = 37/36
pablo - rosa = 1 1/36
Pablo has 1 1/36 quarts more than Rosa
PART B
Calculate the iced tea Pablo gave to Rosa
Change into proper fraction/improper fraction
iced tea given = 15% × 4 4/9
iced tea given = 15/100 × 40/9
iced tea given = 600/900
iced tea given = 2/3
Calculate Pablo's iced tea after giving
Pablo's = 40/9 - 2/3
Pablo's = 40/9 - (2 × 3)/(3×3)
Pablo's = 40/9 - 6/9
Pablo's = 34/9
Pablo's = 3 7/9
Calculate Rosa's iced tea
Rosa's = 41/12 + 2/3
Rosa's = 41/12 + (2 × 4)/(3 × 4)
Rosa's = 41/12 + 8/12
Rosa's = 49/12
Rosa's = 4 1/12
Pablo has 3 7/9 quarts and Rosa has 4 1/12 quarts