1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
3 years ago
15

. С M 1. AJKME ALKM 2. s S S SSS congruena

Mathematics
2 answers:
My name is Ann [436]3 years ago
8 0
Whatttttttttttttttt.
is this a proof. 5
goldenfox [79]3 years ago
3 0

SSSSSSSSSSSSSSSSSSSSSSSSSSS COOL

You might be interested in
Sketch the graph of the function f(x) = -(x-4)^3 by indicating how a more basic function has been shifted, reflected, stretched,
irina [24]

Step-by-step explanation:

In the attached images we can see the rigid transformation of the function f(x) =x^{3}

1. The basic graph f(x) =x^{3}

2. The reflected graph f(x) = -x^{3}

3. The displaced graph f(x) = -(x-4)^{3}

Reflection: In the expression f(x) = -(x-4)^{3} , the sign - before the parenthesis indicates that the function is reflected in the x axis, for this case the function is even, this means that -f(x) = f(-x) , then the reflection on the x axis is equal to the reflection on the y axis.

Displacement: We observe the term (x-4) of the function f(x) = -(x-4)^{3} and analyze the value -4, where, the sign - indicates displacement to the right and the value 4 indicates the amount that the graph shifted .

3 0
3 years ago
3(4-2x)=-2x<br> will make brainiest to the first two people that answer correctly with explanation
ASHA 777 [7]

Answer:

x = 3

Step-by-step explanation:

First, distribute 3 into the parenthesis:

3(4 - 2x) = -2x

12 - 6x = -2x

Next, combine your x variables by adding +6x to both side:

12 - 6x = -2x           (-6x and +6x cancel out)

   +6x    +6x

12 = 4x                     (divide 12 by 4 to get x by itself)

/4     /4

x = 3

3 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
I don't understand how you find the value of expressions. Ex..<br> 5•[7+7÷(6+1)]+4•12
Alexxandr [17]
= [7+7 <span>÷ 7] + 4.12
= [7+1] + 4.12
= 8 + 4.12
= 12.12

</span>
4 0
3 years ago
Read 2 more answers
What are the x and y values....?<br><br> -1x + 2y = 18 <br><br> Haylp me pls!
Nesterboy [21]
Use the zeroes to figure this out... x=-18, y=9
7 0
3 years ago
Other questions:
  • Which graph below does not represent a function?
    9·2 answers
  • PLS!! ANSWER FIRST TO ANSWER CORRECT WILL BE BRAINLIEST!!!
    7·1 answer
  • Given the function f'() = –2x3 + 36x2 – 90x, determine all intervals on which<br> f is increasing
    11·1 answer
  • Write the equation of a circle with center (4, -5) and radius = square root of 13
    15·2 answers
  • What is -(2×7)+(4g×9a)
    14·1 answer
  • Which answer is the best explanation for how to set up this problem?
    6·1 answer
  • The slope of a line is -, and the y-intercept is 10/3. What is the equation of the line written in general form?
    7·1 answer
  • Determine if the function is a polynomial function. If the function is a polynomial function, state the degree and the leading c
    11·1 answer
  • Just a partial quotient division problem with how to solve it i need it for my test
    6·1 answer
  • PLZZZ HELPPP!! THIS IS TIMEDDD!!!! *look at picture*
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!