1.33333
Step-by-step explanation:
Don't worry it checks out.
Answer:
- Solution of equation ( q ) = <u>1</u><u>6</u>
Step-by-step explanation:
In this question we have given an equation that is <u>3 </u><u>(</u><u> </u><u>q </u><u>-</u><u> </u><u>7</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>2</u><u>7</u><u> </u>and we have asked to solve this equation that means to find the value of <u> </u><u>q</u><u> </u><u>.</u>
<u>Solution : -</u>

<u>Step </u><u>1</u><u> </u><u>:</u> Solving parenthesis :

<u>Step </u><u>2</u><u> </u><u>:</u> Adding 21 on both sides :

On further calculations we get :

<u>Step </u><u>3 </u><u>:</u> Dividing by 3 from both sides :

On further calculations we get :

- <u>Therefore</u><u>,</u><u> </u><u>solution</u><u> </u><u>of </u><u>equation</u><u> </u><u>(</u><u> </u><u>q </u><u>)</u><u> </u><u>is </u><u>1</u><u>6</u><u> </u><u>.</u>
<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>
Now we are very our answer by substituting value of q in the given equation . So ,
<u>Therefore</u><u>,</u><u> </u><u>our </u><u>solution</u><u> </u><u>is </u><u>correct</u><u> </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
<span>1/3 is equivalent to a decimal that does not terminate.
A terminating decimal is one that ends. Some decimals never end, however. If you divide 1 by 3 using the standard algorithm, you will get 0.333333... repeating forever. This is a non-terminating decimal, or repeating decimal.
In contrast, 1/4 is equal to 0.25, which is a terminal decimal.</span>