Answer:
Explanation:
The clock now has potential energy. When the alarm rings, the potential energy is converted into kinetic energy and sound energy.
Alarm clock runs due to the electrical energy. Due to the electric current, the electric motor rotates the blade. It means that the electrical energy is converted into mechanical energy.
The mechanical energy finally generates vibrations which cause sound.
Thus, energy transformation which takes place in alarm clock will follow the order-
Electrical to mechanical to sound.
The enthalpy of the solution is <u>positive </u>and the entropy is <u>positive</u>.
Potassium trioxonitrate (V) KNO₃(s) is a strong oxidizing solid substance that when dissolved in water changes to aqueous solution.
In its aqueous solution state, the randomness of molecules increases as a result of that the entropy will also increase leading to the positive state of the entropy.
Similarly, provided that the solution becomes quite cold to the touch, the enthalpy is also in it positive state.
Therefore, we can conclude that the enthalpy of the solution is <u>positive </u>and the entropy is <u>positive</u>.
Learn more about Potassium trioxonitrate (V) KNO₃(s) here:
brainly.com/question/25303112
The answer would be uranium and thorium. When an alpha ejects a particle, it will create a new atom. So, when uranium ejects an alpha particle, it will produce thorium. They call this process as the alpha decay. Alpha decay often happens on atoms that are abundant nuclei such as uranium, radium, and thorium.
Answer:
the product of the equation is 1.0 x 10^-1
trust me, i'm a major in Biochem :)
Answer:
196 gdm-3
Explanation:
There are two major units of concentration, moldm-3 and gdm-3. The first unit refers to molar concentration while the second unit refers to mass concentration. Both units are useful in chemistry when describing the concentration of solutions as deemed expedient in each particular case.
Here we are required to compute the mass concentration from the molar concentration. We must recall that; mass concentration= molar concentration × molar mass
Let us first obtain the molar mass of H2SO4 from the relative atomic masses given=
2(1) + 32 + 4(16) = 98 gmol-1
Molar concentration of H2SO4 = 2 moldm-3
Mass concentration= 2 moldm-3 × 98 gmol-1
Mass concentration = 196 gdm-3