Answer:
![\sec^2(\theta)=\frac{25}{16}](https://tex.z-dn.net/?f=%5Csec%5E2%28%5Ctheta%29%3D%5Cfrac%7B25%7D%7B16%7D)
Step-by-step explanation:
Recall what the relationship between cosine and secant:
![\sec(\theta)=\frac{1}{\cos(\theta)}](https://tex.z-dn.net/?f=%5Csec%28%5Ctheta%29%3D%5Cfrac%7B1%7D%7B%5Ccos%28%5Ctheta%29%7D)
In other words, secant is the reciprocal of cosine.
So, if we know cosine, we only need to find its reciprocal to find secant.
We are given that cosine is:
![\cos(\theta)=\frac{4}{5}](https://tex.z-dn.net/?f=%5Ccos%28%5Ctheta%29%3D%5Cfrac%7B4%7D%7B5%7D)
Then secant must be:
![\sec(\theta)=\frac{5}{4}](https://tex.z-dn.net/?f=%5Csec%28%5Ctheta%29%3D%5Cfrac%7B5%7D%7B4%7D)
So:
![\sec^2(\theta)=(\frac{5}{4})^2](https://tex.z-dn.net/?f=%5Csec%5E2%28%5Ctheta%29%3D%28%5Cfrac%7B5%7D%7B4%7D%29%5E2)
Square:
![\sec^2(\theta)=\frac{25}{16}](https://tex.z-dn.net/?f=%5Csec%5E2%28%5Ctheta%29%3D%5Cfrac%7B25%7D%7B16%7D)
And we're done!
First, add or subtract all variables
y2 + 4y - 16y + 3y = -7y
-7y + 2 is your answer
Answer:
1. y + 10 - 3/2y = -y/2 + 10
2. 2r+ 7r-r - 9 = 8r - 9
3. 7 + 4p-5+p+2q = 2 + 5p + 2q
Step-by-step explanation:
basically you can add terms that have the same variable
integers can be added together, Xs can be added, Zs, Ys, As, Bs, Cs, you get the point
1. y + 10 - 3/2y = -y/2 + 10
2. 2r+ 7r-r - 9 = 8r - 9
3. 7 + 4p-5+p+2q = 2 + 5p + 2q (do not add different variables p and q ) together
try 4-6 on your own to get this skill down, if you need help with those just let me know
Answer:
A. -61/9
Step-by-step explanation:
(7x + 28) + (7x +28) = 5x - 5 . . . . . . . given equation
14x +56 = 5x -5 . . . . . . . . . . . . . . . . . collect terms
9x = -61 . . . . . . . . . . . . . . . . . . . . . . . . subtract 5x+56
x = -61/9 . . . . . . . . . . . . . . . . . . . . . . . . divide by the coefficient of x