Answer:
Answer:
-13
Step-by-step explanation
Rounded to the nearest 0.01 or
the Hundredths Place.
Check the picture below.
so, the center of the circle is the midpoint of that diametrical segment, and half that length is the radius.

![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ -2 &,& -4~) % (c,d) &&(~ 3 &,& 8~) \end{array}~~~ % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[3-(-2)]^2+[8-(-4)]^2}\implies d=\sqrt{(3+2)^2+(8+4)^2} \\\\\\ d=\sqrt{25+144}\implies d=\sqrt{169}\implies d=13\qquad\qquad \qquad \stackrel{radius}{\frac{13}{2}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%26%28~%20-2%20%26%2C%26%20-4~%29%20%0A%25%20%20%28c%2Cd%29%0A%26%26%28~%203%20%26%2C%26%208~%29%0A%5Cend%7Barray%7D~~~%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B%5B3-%28-2%29%5D%5E2%2B%5B8-%28-4%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%283%2B2%29%5E2%2B%288%2B4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B25%2B144%7D%5Cimplies%20d%3D%5Csqrt%7B169%7D%5Cimplies%20d%3D13%5Cqquad%5Cqquad%20%5Cqquad%20%20%5Cstackrel%7Bradius%7D%7B%5Cfrac%7B13%7D%7B2%7D%7D)
Answer:
B. 184
Step-by-step explanation:
A proportion is an easy way to solve this:

We are asked to give the exact value of <span>cos(arcsin(one fourth)). In this case, we shift first the setting to degrees since this involves angles. we determine first arc sin of one fourth equal to 14.48 degrees. then we take the cos of 14.48 degrees equal to 0.9682. Answer is 0.9682.</span>