The little lines on each side of the rhombus mean that all the sides are the same length.
We can set line LM and MN equal to solve for X, then we can solve the length of a side.
3x-3 = x+7
Add 3 to each side:
3x = x +10
Subtract x from each side:
2x = 10
Divide both sides by 2:
x = 10/2
x = 5
Now we have the value for x, replace x in one of the side formulas:
x +7 = 5+7 = 12
Each side = 12 units.
The perimeter would be 12 + 12 + 12 + 12 = 48 units.
Answer:
GCF 4, LCM 80
Step-by-step explanation:
Since both 16 and 20 have two 2s as factor, their greatest common factor is 4.
The LCM is found by multiplying all of the remaining factors by the LCM:
16 still has (2 x 2), 20 still has (5), times the GCF (4) so 2 x 2 x 5 x 4 = 80.
<span> 7x+2y=5;13x+14y=-1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
</span>System of Linear Equations entered :<span><span> [1] 7x + 2y = 5
</span><span> [2] 13x + 14y = -1
</span></span>Graphic Representation of the Equations :<span> 2y + 7x = 5 14y + 13x = -1
</span>Solve by Substitution :
// Solve equation [2] for the variable y
<span> [2] 14y = -13x - 1
[2] y = -13x/14 - 1/14</span>
// Plug this in for variable y in equation [1]
<span><span> [1] 7x + 2•(-13x/14-1/14) = 5
</span><span> [1] 36x/7 = 36/7
</span><span> [1] 36x = 36
</span></span>
// Solve equation [1] for the variable x
<span><span> [1] 36x = 36</span>
<span> [1] x = 1</span> </span>
// By now we know this much :
<span><span> x = 1</span>
<span> y = -13x/14-1/14</span></span>
<span>// Use the x value to solve for y
</span>
<span> y = -(13/14)(1)-1/14 = -1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
<span>
Processing ends successfully</span></span>
63 degrees, if that angle is 72 that means the other must be 54 (add to 180), and if that angle on the other triangle is 54, the others must be 63 (add to 180).
Answer:
X=4
Step-by-step explanation:
4*4=16+7=23