For this case, the first thing we must do is define a reference system.
Suppose that the positive direction of the reference system is upward.
We have that the sum of forces in the vertical axis is given by:
Fy = Fp - Fg
Substituting values:
Fy = 5500 - 6000
Fy = - 500
The negative sign means that the direction of the force with respect to the defined coordinate system is downward.
Answer:
The net force is:
↓ 500N
Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
I would say that it would take her 35 * 2 cashing Bill properly because I multiply 0.25 times 16 which gave me 1.50 + 2.50 equals 3.50
Answer:
A 2.0 kg ball, A, is moving with a velocity of 5.00 m/s due west. It collides with a stationary ball, B, also with a mass of 2.0 kg. After the collision
Explanation:
Answer:
<h2> $1.50</h2>
Explanation:
Given data
power P= 2 kW
time t= 15 min to hours = 15/60= 1/4 h
cost of power consumption per kWh= 10 cent = $0.1
We are expected to compute the cost of operating the heater for 30 days
but let us computer the energy consumption for one day
Energy of heater for one day= 2* 1/4 = 0.5 kWh
the cost of operating the heater for 30 days= 0.5*0.1*30= $1.50
<u><em>Hence it will cost $1.50 for 30 days operation</em></u>