Answer:
t=1.623 sec
Explanation:
The distance traveled before the echo is had is:

Given the speed of sound as v=345m/s, we use the speed equation to solve for t:

Hence, it takes 1.623 seconds to hear the echo.
Answer:
a = 1.72 m/s²
Explanation:
The given kinematic equation is the 2nd equation of motion. The equation is as follows:
xf = xi + (Vi)(t) + (1/2)(a)t²
where,
xf = the final position = 5000 m
xi = the initial position = 1000 m
Vi = the initial velocity = 15 m/s
t = the time taken = 60 s
a = acceleration = ?
Therefore,
5000 m = 1000 m + (15 m/s)(60 s) + (1/2)(a)(60 s)²
5000 m = 1000 m + 900 m + a(1800 s²)
5000 m = 1900 m + a(1800 s²)
5000 m - 1900 m = a(1800 s²)
a(1800 s²) = 3100 m
a = 3100 m/1800 s²
<u>a = 1.72 m/s²</u>
We're going to multiply the time it took for you to hear thunder (3.5 seconds) by the speed of sound in air (340 m/s)
3.5 x 340 = 1190
The lightning bolt was 1,190 meters away.
Answer:
<h2>1567.09 N/m</h2>
Explanation:
Step one:
given data
mass m=5kg
compression x= 3.13cm to m= 0.0313m
<em>According to Hooke's law, provided the elastic limit of an elastic material is not exceeded the extension e is directly proportional to the applied force</em>
F=ke
where
k= spring constant in N/m
e= extension/compression in
Step two:
assume g= 9.81m/s^2
F=mg
F=5*9.81
F=49.05N
substitute in the expression F=ke
49.05=k*0.0313
k=49.05/0.0313
k=1567.09 N/m
<u>The force constant (in N/m) of the spring is 1567.09 N/m</u>
Both of your answers are correct