Answer:
x = 12
m(QS) = 52°
m(PD) = 152°
Step-by-step explanation:
Recall: Angle formed by two secants outside a circle = ½(the difference of the intercepted arcs)
Thus:
m<R = ½[m(PD) - m(QS)]
50° = ½[(12x + 8) - (4x + 4)] => substitution
Solve for x
Multiply both sides by 2
2*50 = (12x + 8) - (4x + 4)
100 = (12x + 8) - (4x + 4)
100 = 12x + 8 - 4x - 4 (distributive property)
Add like terms
100 = 8x + 4
100 - 4 = 8x
96 = 8x
96/8 = x
12 = x
x = 12
✔️m(QS) = 4x + 4 = 4(12) + 4 = 52°
✔️m(PD) = 12x + 8 = 12(12) + 8 = 152°
Answer: -1 1/2
3/2= 1 1/2 just make it a negative
This is the concept of trigonometry, we are required to calculate the number of floors the building has given the information above;
# floors=[height of the building]/[height of each floor]
height of each floor=17 ft
let the height of the building be,h.
h is given by;
tan theta=opposite/adjacent
theta=80
opposite=h
adjacent=75 ft
thus
tan 80=h/75
h=75 tan 80
h=425.35 ft
thus the number of floors will be:
425.35/17
=25.020≈25 floors
It's difficult to make out what the force and displacement vectors are supposed to be, so I'll generalize.
Let <em>θ</em> be the angle between the force vector <em>F</em> and the displacement vector <em>r</em>. The work <em>W</em> done by <em>F</em> in the direction of <em>r</em> is
<em>W</em> = <em>F</em> • <em>r</em> cos(<em>θ</em>)
The cosine of the angle between the vectors can be obtained from the dot product identity,
<em>a</em> • <em>b</em> = ||<em>a</em>|| ||<em>b</em>|| cos(<em>θ</em>) ==> cos(<em>θ</em>) = (<em>a</em> • <em>b</em>) / (||<em>a</em>|| ||<em>b</em>||)
so that
<em>W</em> = (<em>F</em> • <em>r</em>)² / (||<em>F</em>|| ||<em>r</em>||)
For instance, if <em>F</em> = 3<em>i</em> + <em>j</em> + <em>k</em> and <em>r</em> = 7<em>i</em> - 7<em>j</em> - <em>k</em> (which is my closest guess to the given vectors' components), then the work done by <em>F</em> along <em>r</em> is
<em>W</em> = ((3<em>i</em> + <em>j</em> + <em>k</em>) • (7<em>i</em> - 7<em>j</em> - <em>k</em>))² / (√(3² + 1² + 1²) √(7² + (-7)² + (-1)²))
==> <em>W</em> ≈ 5.12 J
(assuming <em>F</em> and <em>r</em> are measured in Newtons (N) and meters (m), respectively).