Answer:
And rounded up we have that n=421
Step-by-step explanation:
We know that the sample proportion have the following distribution:

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 90% of confidence, our significance level would be given by
and
. And the critical value would be given by:
The margin of error for the proportion interval is given by this formula:
(a)
And on this case we have that
and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
We assume that a prior estimation for p would be
since we don't have any other info provided. And replacing into equation (b) the values from part a we got:
And rounded up we have that n=421
Answer:
-1/16
-1/4
1
-4
16
Step-by-step explanation:
Put x as -4 and solve.
-4^-2 = 1/-4^2 = -1/16
-4^-1 = 1/-4 = -1/4
-4^0 = 1
-4^1 = -4
-4^2 = 16
Given Information:
Mean weekly salary = μ = $490
Standard deviation of weekly salary = σ = $45
Required Information:
P(X > $525) = ?
Answer:
P(X > $525) = 21.77%
Step-by-step explanation:
We want to find out the probability that a randomly selected teacher earns more than $525 a week.

The z-score corresponding to 0.78 from the z-table is 0.7823

Therefore, there is 21.77% probability that a randomly selected teacher earns more than $525 a week.
How to use z-table?
Step 1:
In the z-table, find the two-digit number on the left side corresponding to your z-score. (e.g 0.7, 2.2, 1.5 etc.)
Step 2:
Then look up at the top of z-table to find the remaining decimal point in the range of 0.00 to 0.09. (e.g. if you are looking for 0.78 then go for 0.08 column)
Step 3:
Finally, find the corresponding probability from the z-table at the intersection of step 1 and step 2.
Answer:
is this required answer
Step-by-step explanation:
AB=3x-2
=3*8-2
=22