Answer:
Option 2 - Approximately 24–36 pounds
Step-by-step explanation:
Given : A standard American Eskimo dog has a mean weight of 30 pounds with a standard deviation of 2 pounds. Assuming the weights of standard Eskimo dogs are normally distributed.
To find : What range of weights would 99.7% of the dogs have?
Solution :
The range of 99.7% will lie between the mean ± 3 standard deviations.
We have given,
Mean weight of Eskimo dogs is
Standard deviation of Eskimo dogs is
The range of weights would 99.7% of the dogs have,





Therefore, The range is approximately, 24 - 36 pounds.
So, Option 2 is correct.
Answer:
The value that represents the 90th percentile of scores is 678.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the value that represents the 90th percentile of scores.
This is the value of X when Z has a pvalue of 0.9. So X when Z = 1.28.




The value that represents the 90th percentile of scores is 678.
Answer:
2. 8
3. 6
4. 8
5. -8
Step-by-step explanation:
Answer:
X= 43
y=120
Step-by-step explanation:
3x + 8 + X = 180
4x = 180 - 8
X = 43
2y +17+X = 180
2y + 17 + 43 = 180
y = 180 - 60
= 120