This is a linear relationship. The slope-intercept form of the linear equation is:

Where,
- m is the rate of change (positive if increasing rate and negative if decreasing rate)
- c is the y intercept, or the initial value
<u><em>Rate of change is 2.5 quarts per minute (it is decreasing so m is -2.5)</em></u>
<u><em>Initial value is 50 quarts, so c is 50.</em></u>
Plugging in the values we get
.
Changing variables to w instead of y and t instead of x, gives us,
. Where w is warts of water left in the tub and t is the time in minutes.
There is no viable solution when t=30 because at t=20, w=0 (
). It means after 20 minutes, there is no water left. So t=30 minutes doesn't make sense.
ANSWER:
Modelling equation: 
When
, there is no VIABLE solution
<em>Answer:</em> ΔTAU ≈ ΔUAV ≈ ΔTUV
<em>Step-by-step explanation:</em>
I'm not really sure what "work" you really need; this is a problem that can be solved easily by simply looking at the triangles and seeing which sides have the same ratio of distances for each side.
Best of luck with your assignment. :) Feel free to give me Brainliest if you feel this helped. Have a good day.
When you see an equation with parenthesis around it, you can use this:
Parenthesis
Exponents
Multiplication
Division
Addition
Subtraction
Otherwise known as PEMDAS.
We can see that in the equation, there are parenthesis, so we can open those. We open parenthesis by taking the number right next to the parenthesis (or outside the parenthesis) and we multiply that number by everything inside. So this is what it would look like:
-2x^2 - 10x + 8
See how the signs changed? This rule only applies when you multiply something, but here is how I think of it:
+ and + always equals +.
- and - always equals +.
- and + always equals -.
+ and - always equals -.
So that's it! Just to be clear, the answer is:
-2x^2 - 10x + 8
Hope I helped, sorry if I'm wrong!
`Mschmindy
Round two side of measurement and exercise
Answer:
Kelsey is correct.
Step-by-step explanation:
One of the rules when solving an equation is that you need to isolate the variable, meaning that it just needs to be x by itself. To do that, you would need to start by subtracting 6. If you were to divide by 3 first, the answer would be twice what it should be.